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1 Introduction
For routers and switches to handle ever-increasing band-
width requirements, the packet “fast-path” must be
handled with specialized hardware. There have been two
approaches to building such packet forwarding hardware.
The first is to embed particular algorithms in hardware;
this is what most commodity forwarding chips do (e.g.,
those from Broadcom, Marvell, and Fulcrum). These
chips have led to amazing increases in performance and
reductions in cost; for instance, one can now get 24 ports
of gigabit ethernet for under $1000.

Unfortunately, this approach offers only very rigid func-
tionality; one can’t change protocols or add new features
that require hardware acceleration without redoing the
chip. This forces network forwarding enhancements to
evolve on hardware design timescales, which are glacially
slow compared to the rate at which network applications
and requirements are changing.

To counter this inflexibility, several vendors have
taken a different approach by introducing more flexible
“network processors”. These have not been as successful
as anticipated, for at least two reasons. First, designers
were never able to find a sweet-spot in the tradeoff
between hardware simplicity and flexible functionality,
so the performance/price ratios have lagged well behind
commodity networking chips. For another, the interface
provided to software has proven hard to use, requiring
protocol implementors to painstakingly contort their
code to the idiosyncrasies of the particular underlying
hardware to achieve reasonable performance. These two
problems (among others) have prevented general-purpose
network processors from dislodging the more narrowly
targeted commodity packet forwarding hardware that
dominates the market today.

In this paper, we step back from these two well-known
approaches and ask more fundamentally: what would we
want from packet forwarding hardware, how might we
achieve it, and what burden does that place on networking
software?

Ideally, hardware implementations of the forwarding
paths should have the following properties:

• Clean interface between hardware and software:
The hardware-software interface should allow each
to evolve independently. Protocol implementations
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should not be tied to particular networking hardware,
and networking hardware should not be restricted
to particular protocols. General-purpose network
processors have largely failed the first requirement,
while the current generation of commodity network-
ing chips fail the second requirement.
• Hardware simplicity: In order to scale to increasing

speeds, the hardware functionality should be of
very limited complexity. Again, both current
approaches to hardware acceleration fail to satisfy
this requirement.
• Flexible and efficient functionality: The resulting

software-hardware combination should be capable
of realizing a wide variety of networking functions
at high-speed and low-cost, while having short
development cycles. Commodity chips work at
high-speed and low-cost, but have long development
cycles for new functionality. General-purpose
network processors are not yet competitive on speed
or cost.

In this paper we propose a different approach to
hardware packet forwarding that has the potential to
realize all of these goals. Our approach assigns a
completely different role to hardware. Traditionally,
hardware implementations have embodied the logic
required for packet forwarding. That is, the hardware
had to capture all the complexity inherent in a packet
forwarding decision.

In contrast, in our approach all forwarding decisions
are done first in software, and then the hardware merely
mimics these decisions for subsequent packets to which
that decision applies (e.g., all packets destined for the
same prefix). Thus, the hardware does not need to
understand the logic of packet forwarding, it merely
caches the results of previous forwarding decisions (taken
by software) and applies them to packets with the
same headers. The key task is to match incoming
packets to previous decisions, so the required hardware
is nothing more than a glorified TCAM, which is simple
to implement (compared to other networking hardware)
and simple to reason about. We describe this approach in
more detail in Section 2.

One key challenge in this approach is scaling to
high speeds. Achieving high forwarding rates is not a
matter of the number of clock cycles needed to make
a forwarding decision, but instead is one of cache hit
rates; what fraction of packet forwarding can be done
based on the forwarding of previous packets? This
question is central to the viability of this approach, and
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we address it in Section 3. Another key challenge
is deciding to which packets a particular forwarding
decision applies (i.e., which fields in the packet header
must match in order to apply a decision), and when this
decision has been rendered obsolete by changing network
state (e.g., changes in forwarding tables); these system
design issues are addressed in Section 4.

This approach has been motivated by a long line
of flow-oriented approaches to networking hardware,
from [5] to [2] (and many others). What makes our
approach different from traditional connection-oriented
architectures (e.g., ATM) is that our approach does
not require any change to networking protocols. Our
approach (similar to the references [2, 5]) only changes
the interface between hardware and software, but does
not affect protocols or the Internet architecture. Like [3]
we seek to provide a flexible software model with
hardware forwarding speeds, however in our approach we
propose to fully decouple the software from the hardware,
while [3] provides direct access to hardware resources
such as the TCAM and special purpose ASICs. We view
this as a necessary and complimentary step for integrating
with existing hardware.

2 Our Approach
2.1 General Description

Packet forwarding decisions deterministically depend on
the header of the arriving packet and on some local state in
the router/switch (such as a routing table).1 For example,
the header/state combination for ethernet forwarding is
the destination MAC address and the L2 learning table,
whereas for IP forwarding it is the destination IP address
and the FIB.

The forwarding decision includes both the output
port(s) on the network device as well as possible modifi-
cations to the packet header, such as the label swapping in
MPLS or packet encapsulation/decapsulation. As long as
the relevant pieces of local state have not changed, then
all packets with the same packet header should receive the
same forwarding behavior. This statement applies to any
forwarding protocol that depends only on packet headers
and local state.

To leverage this fact, we treat packet forwarding as a
matching process, with all packets matching a previous
decision handled by the hardware, and all non-matching
packets handled by the software. We assume that when a
packet is handled by software, we can infer a flow entry
for that packet which contains four pieces of information:
Ingress port(s): This specifies to which ingress ports a
flow entry applies. Many rules will only apply to the
ingress port of the packet that generated the flow entry,

1We are ignoring forwarding decisions based on deep-packet
inspection.

but other rules (such as “packets with TTL=1 should be
dropped”) can be applied to all ingress ports.
Matching rule: The software specifies the fields in the
packet header that must match for the flow entry to
apply. This could be the entire header (i.e., requiring
a perfect match), or only some fields (e.g., perhaps only
the destination address to match).
Forwarding action: The forwarding action is the set of
output ports to which the packet should be sent, along
with (optionally) the rewritten packet headers for each
port. Dropping the packet is represented by a special null
output port.
State dependence: This represents the local state on
which the forwarding decision is based (such as entries in
a routing table or ACL database).

When a packet arrives, it is compared to the table of
flow entries corresponding to its ingress port. If its packet
header does not match any of the entries, then it is sent
to software for processing. If it matches a flow entry, the
packet is handled according to the specification of the
forwarding action in the flow entry. Whenever a piece
of local state changes, such as an update to an ACL or
routing table, then all flow entries that depended on that
state are invalidated and removed from the flow table.

Before proceeding to examples, we mention a few more
detailed points. First, the matching rules must be defined
so a packet matches no more than one rule. Since we
assume that the software deterministically forwards each
packet based on its header fields and particular system
state, it should be possible to generate non-conflicting
entries at runtime.

Second, we view stateful tunneling (e.g., IPsec in
which a sequence number is updated for every packet) as
virtual output ports rather than part of the forwarding
logic. This is similar to how they are handled in
standard software IP forwarding engines in which they are
modeled as networking interfaces. If we did not use this
technique then no flow entry would be recorded for such
flows, because the state on which the forwarding actions
depends (which includes per-packet modifications) would
be updated on every new packet arrival.

Third, there are a number of possible system designs
that could determine the headers and system state used
in a decision, such as a special-purpose programming
language, a specialized compiler or even hardware
support. We discuss these further in Section 4. However,
the primary goal of this paper is not to give a specific and
comprehensive system design (we are working on this
and plan to discuss it in future work), but rather to explore
the fundamental viability of our general approach.

2.2 Examples

To demonstrate how our proposal operates in practice, we
discuss two examples of familiar datapath functions in
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Packet fields Memory dependencies Output Modifications
eth type = VLAN, VLAN ID VLAN database, port configuration, L2 MAC table access port remove VLAN

eth type ! = VLAN VLAN database, port configuration, L2 MAC table access port None
eth type = VLAN, VLAN ID VLAN database, port configuration, L2 MAC table trunk port None

eth type ! = VLAN VLAN database, port configuration, L2 MAC table trunk port add VLAN

Table 1: Packet fields, memory dependencies and potential packet modifications for VLAN tagging example.

if eth.type 6= IPv4 then1

send to(drop port); return;2

end3

if ip.ttl ≤ 1 then4

generate icmp(); return;5

end6

if not valid ip.chksum then7

send to(drop port); return;8

end9

decrement(ip.ttl); update(ip.chksum);10

if no ip.options and not ip.fragmented then11

next hop, dst port←− fib(ip.dst ip);12

eth.src mac←− dst port.mac;13

eth.dst mac←− arp cache(next hop);14

send to(dst port);15

else16

// Complex header processing...17

end18

Figure 1: Pseudo code for IP routing.

heavy use today, IPv4 routing and VLAN tagging.
IP routing. We begin by describing how our approach
operates with standard IPv4 routing (pseudo-code shown
in Figure 1). From the standpoint of caching, IPv4 is non-
trivial in that it includes multiple state dependencies as
well as a number of header modifications (TTL decrement,
checksum update, L2 address updates).

On packet receipt, the router performs basic header
checks (protocol version, TTL), and verifies the checksum
before doing a prefix lookup in the FIB. Hence, the
forwarding decision depends on all of the protocol fields
as well as the locally stored FIB. Moreover, because the
checksum is dependent on every byte in the header (except
itself), every header field must be included in the flow
entry (including the TTL).2 However, as we show in the
next section, even with the full header included in the
matching rule, our approach can achieve very high cache
hit rates.

After looking up the next hop, the router consults the
ARP cache for the next hop MAC address. The Ethernet
header is updated with the MAC of the outgoing interface
as well as the next hop MAC address before being sent
out. Thus, local port MAC configuration, and ARP cache
2This can be avoided by relying on endpoint checksum
verification as is used in IPv6 and has been suggested
elsewhere [7].

are added as state dependencies for the flow entry.
VLAN tagging. We consider a simple VLAN tagging
implementation, which implements port-based VLAN
encapsulation and decapsulation for packets on access
ports, L2 forwarding within VLANs, and pass-through of
VLAN packets on trunk ports. Table 1 summarizes the
packet header and memory dependencies of this example
for given inputs. Briefly, if an incoming packet was
received on an access port, it is tagged with the VLAN ID
associated with that port. This adds the state dependency
of the VLAN database to any resulting decision. Once the
associated VLAN has been identified (if any) the packet
VLAN ID and destination MAC addresses are used for L2
forwarding. This adds the MAC learning tables to the state
dependency of the flow entry. In the final step, the packet
is sent out of one or more ports as determined by the
L2 forwarding step. If the port is an access port (and the
packet has a VLAN header), the VLAN header is removed.
This adds the port configuration as a dependency.

Tagging and label swapping (e.g., MPLS in addition to
VLAN) fit nicely with our proposal as the associated con-
figuration state generally changes very slowly. However,
for large networks, MAC learning can generate additional
overhead due to learning table entry timeouts. To validate
that these are manageable in practice, we explore the
cache hit and miss ratios of L2 learning over enterprise
traces in the following section.

The two examples presented in this section are limited
to lookup and forwarding. However, additional datapath
mechanisms, such as ACLs, can be added by simply
updating the software. In the case of ACLs, this would
merely add the ACL table to the state dependencies.
Adding forwarding for additional protocols is similarly
straightforward. Since the protocol type is implicitly
included in the matching rule, it will automatically be
de-multiplexed by the hardware.

3 Scaling
In order for the software not to become a bottleneck, the
cache hit rates must correspond to the speed differential
between the software and hardware forwarding rates.
For example, a commodity 48x1Gigabit networking chip
has roughly two orders of magnitude greater forwarding
capacity than a software solution using a standard PC
architecture (e.g., [11] or [8]). Therefore, to maintain
hardware-only speeds for an integrated architecture with
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similar performance characteristics, the hit rates must
exceed 99%.

In this section, we analyze cache hit rates using
standard L2 and L3 forwarding algorithms on network
traces. We explore the performance of our approach as
described here, and also with minor modifications that
help achieve vastly better hit rates.
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Figure 2: Results of cache hit-rate simulations for L2 and
L3 forwarding algorithms.

IP forwarding. We first explore the cache behaviour of
standard IPv4 forwarding. For this analysis we use two
publicly available traces [9, 10], one collected from an
OC-48 link consisting of 6,795,675 packets covering a
5 minute time window, and a second collected from an
OC-12 link consisting of 6,872,338 packets covering one

hour.
We assume the naive hardware implementation of a

managed TCAM in which each matching rule fills up an
entry. The system uses LRU when replacing cache entries
and we assume that the FIB does not change during the
period of analysis.

We test two variants of IPv4 fowarding and show
the results in Figure 2. The first algorithm (traditional
forwarding in the graph) strictly obeys the IPv4 forward-
ing specification (including full header checksum), and
thus, requires a full packet header match to be cached.
Reaching a 99% hit rate requires a TCAM of 4,096 entries
in the OC-12 case. For the OC-48 trace, the results are
significantly worse; the hit rate only reaches 95% even
with an essentially infinite number of entries.

In the second variant (modified forwarding in the
graph), we make two modifications which greatly improve
the results. First, we perform an incremental update of
the checksum which is limited to the TTL decrement
change. As a result, no header values beyond the version,
TTL, and destination are included in the cache entry.3

Secondly, the most precise lookup is a /24 rather than
full IP match (this is not an unreasonable assumption for
high bandwidth links; most FIBs on such links won’t
contain prefixes smaller than /24s). These changes greatly
improve the hit rates. In the case of the OC 48, a 99% hit
rate is achieved at 8,000 entries. Further, the lowest hit
rate we recorded using the OC-12 traces was 99.9889%,
sufficient for speed differentials of over three orders of
magnitude.
L2 learning. We also look at the performance of de-
cision caching for standard L2 learning. Our MAC
learning implementation uses 15 second timeouts of
learned addresses and the hardware uses an LRU cache
replacement strategy. For analysis, we use publicly
available enterprise trace data [1] covering a 3 hour time
period, and containing 17,472,976 packets with 1958
unique MAC addresses.

The cache hit rates of this analysis are shown in the
bottom most graph of Figure 2. For all entry sizes we
tested (the minimum being 256) we found the cache hit
rate to be over 99.9%. We note that the use of soft state
in this manner appears to have significantly lower TCAM
requirements than today’s commercial Ethernet switches
which commonly hold 1 million Ethernet addresses (6MB
of TCAM).

While much more study is warranted on the scaling
properties of caching, we feel that the results are promis-
ing. Commodity TCAMs with entry widths suitable for
L2 and L3 decision caching (e.g., 36 bytes) and with
8k entries (sufficient for all but the OC-48 case) cost
about $50 in bulk at the time of this writing. Further, we
3We note that IPv6 does not require per-hop IP checksums, as
the design community found them redundant.
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note that we make modest assumptions as to the relative
forwarding speeds of the on-board CPUs. With the onset
of multicore, the prospects for the speed differential
between the CPU and the hardware forwarding decreasing
are good. As long as the forwarding doesn’t involve
per-packet state changes, the software should scale as a
function of the number of cores.4

4 System Design Approaches
If the basic matching approach we are advocating can
achieve sufficiently high speeds, as we discussed in
the last section, then the next challenge is whether
we can determine the correct matching rules and state
dependencies. There are two extreme approaches one
can take (though we suspect an intermediate compromise
will be adopted in practice): explicit definition (by
the implementor), or automated inference via runtime
analysis (e.g., dynamic binary instrumentation). We
discuss these in turn.

4.1 Explicit Dependency Identification
The simplest approach to determining matching rules and
state dependencies is to put the onus of identifying them
on the programmer. This could be done manually, forcing
the programmer to explicitly annotate the forwarding
decisions with the headers and system state it relies on.
Note that while the programmer has to explicitly define
these dependencies, they do not have to explicitly manage
the flow entries themselves; once the matching rules and
state dependencies are specified, a compiler would then
generate the necessary code to invalidate any related flow
entries upon updates to local state.

Similar methods have been used for global state man-
agement in parallel programming environments (see e.g.,
[6]), and should be straightforward to apply to packet
forwarding. An alternative approach to extending the
compiler is to provide the developer with a set of library
calls that provide similar functionality to the annotations.

While conceptually simple, this explicit identification
approach imposes a burden on the programmer and
increases the risk of error; even if the algorithm is imple-
mented correctly, a missing state dependency could result
in incorrect runtime behavior. Further, it requires that all
state dependencies be identified, which complicates the
use of non-annotated third-party libraries.

4.2 Transparent Dependency Identification
It would be far easier for programmers if they could
focus on merely implementing the required forwarding
decisions, and let the system automatically infer what
the matching rules and state dependencies were. Unfor-
tunately, while forwarding logic itself may be simple,
4Although, admittedly, the bus speeds between the CPUs and
network hardware require special attention.

deducing the headers and state that effect decisions is
difficult without developer cooperation. For example,
some of the challenges are:
• Most forwarding software will have state not di-

rectly used as a part of the forwarding decision. This
includes counters, file handles, and any configura-
tion state. In an extreme case, a global timer value is
used to timestamp all incoming packets. In a naive
implementation, every time-tick would invalidate
all flow entries. Complex data structures further
complicate the analysis by maintaining their own
internal state which may change without impacting
the outcome of a forwarding decision.
• Processor architecture may require the forwarding

logic to access state that isn’t part of the resulting
decision. For example, prefixes for LPM are
commonly read as a single word (beginning from the
least significant bit), while only the most significant
bits may be relevant to the decision.
• Pipelined and parallel execution models require

careful dependency management to attribute a given
state access with a particular packet.

Despite these challenges, it is worth considering
whether it is possible to determine the headers and state
dependencies via runtime analysis by using, for example,
dynamic binary instrumentation. This could dramatically
increase software overheads, so we are not yet convinced
of its practicality, but we discuss it here as a promising
avenue for future research.

Runtime analysis operates by tracking all memory
references of the forwarding software while processing
packets. This can be done at the granularity of bits [4],
which would be optimal for our application. A simple
heuristic would be to assume that any header value that
was accessed by the software, or any static or heap state,
is a dependency.

Clearly this approach requires disciplined program-
ming over a limited programming model and could not
effectively be applied to existing software. Further, the
inference is only transparent at the syntax level. The
developer must be aware of the runtime characteristics of
the system and act accordingly (for example by avoiding
spurious reads to global data).

4.3 Inferring Packet Modifications
In addition to inferring important headers and state
dependencies, the system must also determine the actions
to apply to the packet. While it may be possible
to transparently infer the changes at runtime using
the techniques discussed in the previous section, a
simpler approach would have the developer specify
actions explicitly in a manner similar to [2]. To be
sufficiently general, the action set must be able to
support the modification of arbitrary bytes as well
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as byte insertion (for encapsulation) and deletion (for
decapsulation).

5 Conclusions
In all but the lowest end switches and routers, packet
forwarding is largely done in hardware. While not often a
subject of study in the academic literature, the advances
in packet forwarding hardware has been remarkable. In
fact, commodity networking chips now support aggregate
speeds that only a few years ago were only available on
the highest-end routers.

As successful as this generation of hardware-accelerated
packet forwarding has been, in the years ahead it must
find a way to accommodate two trends that appear to be
on a collision course:
• Speed: the demand for bandwidth continues to

grow, in enterprises, datacenters, and the wide-area
Internet. Backbone links have transitioned from
20Gbps to 40Gbps, core switches in datacenters
have high densities of 10Gbps ports, and ever-faster
switches and routers are on the horizon.
• Control: the need for better network management

and security, particularly in the areas of traffic engi-
neering and access control, has increased emphasis
on measures for controlling packet forwarding.

Dealing with increasing speed in hardware calls for
limiting the complexity of forwarding decisions (so they
can be done efficiently in hardware) and limiting the
flexibility of these decisions (so the hardware does not
need to be changed). On the other hand, attaining
greater control over forwarding decisions calls for greater
complexity in the forwarding path, and for greater
flexibility (since the nature of these control decisions
will change far more frequently than the basic protocols
change).

The approach described here tries to accommodate
these conflicting desires by retaining full generality
of function while remaining simple to implement (by
hardware designers) and use (by software implementors).
Any forwarding function that depends only on the packet
header and local state can be implemented over the same
hardware, with a very straightforward interface.

Achieving this generality and ease-of-use at high
speeds requires a large enough TCAM-like cache to
achieve a very low cache miss rate. Thus, the viability of
our approach depends on future trends in hardware (which
determines the cost of a given cache size and the
speed of software processing) and network traffic (which
determines the necessary cache size for a given cache
hit rate). We can’t make definitive projections about any
of these, but our initial investigations suggest that our
approach may indeed be viable. In particular, if we focus
on IPv6, with its lack of per-hop checksum, then the
required cache sizes are very inexpensive.

Of course, this is all very preliminary, and we hope to
soon embark on a much fuller investigation. This will
entail a more extensive set of traces, a more thorough
analysis of the factors that determine the cache miss rate,
and building a fully functioning implementation of this
approach.
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ABSTRACT

Most switch vendors have launched “open” platform de-
signs for routers and switches, allowing code from cus-
tomers or third-party vendors to run on their proprietary
hardware. An open platform needs a programming in-
terface, to provide switchlets sufficient access to plat-
form features without exposing too much detail. We dis-
cuss the design of an abstraction layer and API designed
to support portability between vendor platforms, isola-
tion between switchlets and both the platform and other
switchlets, high performance, and programming simplic-
ity. The API would also support resource-management
abstractions; for example, to allow policy-based alloca-
tion of TCAM entries among multiple switchlets.

1 INTRODUCTION

Traditionally, router and switch1 platforms have either
been commodity platforms running open but slow im-
plementations, or proprietary hardware running closed
but fast implementations. Most router vendors currently
follow the closed-but-fast model, which gives them com-
plete control over system quality, but has become a bar-
rier to innovation.

Recently, major router vendors have initiated pro-
grams to provide open router platforms (ORPs), which
allow third parties to develop software extensions for
proprietary hardware. ORPs potentially support faster
deployment of novel networking features; for example,
one could deploy Stanford’s OpenFlow [13] on an ORP.

While the typical vendor’s approach to an ORP is to
provide a Linux environment running on an x86 proces-
sor as part of the platform, the traditional Linux API is
the wrong abstraction. These boxes are interesting pre-
cisely because they have specialized hardware features
that standard Linux does not (should not) support.

We need an ORP API that offers controlled access
to these hardware features. Ideally, this API would ex-
pose all of the functionality and performance of mod-

1We use “router” and “switch” interchangeably in this paper.

ern router hardware, while maintaining the useful prop-
erties of commodity operating systems: software porta-
bility between vendors, isolation between software com-
ponents, easy management, etc. Such an API would also
be the boundary between open-source upper layers, and
lower layers that the router vendors insist on maintaining
as proprietary trade secrets.

Previously, Handley et al. [7, 8] described XORP, an
eXtensible Open Router Platform. XORP provides a
nice abstraction for building relatively high-performance
routers on top of commodity platforms. While XORP
potentially could run on a proprietary-hardware open
router platform (PHORP), we are not aware of such an
implementation. We also believe that XORP’s abstrac-
tions, such as its Forwarding Engine Abstraction (FEA),
expose too little of the power of modern router hardware,
and do not sufficiently address the scarcity of certain
hardware resources.

In this paper we explore the design requirements for an
“Open Router Proprietary-Hardware Abstraction Layer,”
or Orphal. Orphal’s goals include support for portability
of third-party components between different proprietary
platforms; isolation between these components; expos-
ing as much of the hardware’s functionality as possible;
and managing scarce hardware resources.

Casado et al. [4] argue that software-only routers are
not fast enough, network processors are too complex to
program, and hardware-based designs (including com-
modity forwarding chips) have been too inflexible. They
propose a redesign of hardware-level forwarding mech-
anisms to provide a clean, simple, and flexible interface
between hardware and software. We agree with them that
the best path to flexible and efficient routers depends on
co-evolving router hardware, extensible router software,
and a clean interface between them.

Figure 1 shows how Orphal fits into a PHORP archi-
tecture. Orphal sits above the vendor-proprietary hard-
ware and software, and also above the commodity hard-
ware and operating system, although we see no reason to
modify the standard OS APIs. (The figure shows Linux
as the OS, but it could be any reasonable OS, and per-
haps a virtual-machine layer as well.) In practice, Or-
phal would be implemented as a combination of device
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Figure 1: Layering in an open router platform
drivers and user-mode libraries.

One or more switchlet modules run above Orphal. In
the figure, we show two: a Click [10]+XORP stack, and
an OpenFlow [13]+Ethane [3] stack, but these are just
examples. This is not an “active networks” approach; we
expect switchlets to be installed by the router’s owner.

This position paper describes some of the design
challenges for Orphal. We first describe a high-level
overview of a plausible design. Then, for concreteness,
we focus on issues related to one particular kind of spe-
cialized hardware: Ternary Content Addressable Memo-
ries (TCAMs) used for line-rate lookups. This is moti-
vated by our experience porting OpenFlow (see sec. 4).

2 ORPHAL API DESIGN OVERVIEW

Orphal’s goals include resource management; controlled
sharing; isolation; hardware reprogrammability; perfor-
mance; portability; and manageability. Orphal differs
from the API of a general-purpose OS mostly because
Orphal must expose interesting, router-specific hardware
without sacrificing run-time efficiency.

Resource management A high-performance router is
inherently a real-time environment, with potentially
scarce resources both in the commodity computation
platform, and in the proprietary hardware. Routers are
often required to enforce QoS requirements, which can-
not be maintained if the router itself mis-manages its re-
sources. Orphal needs to support resource management,
including allocation of resources among switchlets, con-
sistent with the overall QoS policy and performance con-
straints of the system.

Which resources need to be managed? We can as-
sume that the commodity OS will manage commodity-
hardware resources (CPU, RAM, stable storage), while
Orphal will manage router-specific resources such as
TCAM entries, hash-table entries, buffer space, pro-
grammable ASICs, etc. We also want to manage power-
related resources (powering down idle line cards, per-
port rate scaling, etc.) using Orphal. One challenge
is to define Orphal’s resource management so that it is
portable across a range of router hardware with various
interesting kinds of resources; we believe that this can
be done using vendor-specific switchlets that Orphal in-
vokes via upcalls (see section 2.1).

Controlled sharing Orphal must provide controlled
sharing of abstract resources such as forwarding-table
entries, as well as the real resources (such as hash-table
and TCAM entries) used to implement these abstrac-
tions.

For example, if two switchlets want to control the ac-
tions for packets for a given destination – e.g., a firewall
switchlet and a QoS switchlet – how should Orphal de-
cide which switchlets get that control? If two switch-
lets want to process the same packet, which one gets it
first? We believe that prior work on kernel packet fil-
ters [15, 20] provides some useful models; for example,
Orphal could assign precedence (priority) levels to each
switchlet, and let each switchlet declare whether lower-
precedence switchlets should see the packets it handles.

Isolation One goal of an ORP is to allow composition
of switchlets from different third-party component ven-
dors. While we need not assume that switchlets might
be malicious, the potential remains for unexpected “fea-
ture interactions.” (This is a problem even when all com-
ponents come from the same vendor.) Two switchlets
running on top of Orphal should not accidentally inter-
fere with each other, either directly or indirectly. Thus,
the system must prevent switchlets from interfering with
each other’s code and private state. Isolation is usually
accomplished either with a process-like abstraction, or
using a virtual machine abstraction. This choice is likely
to be made by the router vendor, and Orphal should sup-
port either model, as transparently as possible.

Hardware reprogrammability We expect some
router platforms to provide programmable hardware
(not just configurable hardware, such as TCAM tables).
For example, an ASIC in the packet-processing fast
path could support programmability for deep-packet
inspection (DPI) operations [9]; NetFPGA [16] is
another example. Given these programmable features,
should Orphal provide an API allowing switchlets to,
for example, push arbitrary microcode into an ASIC,
or would it be safer to simply provide access to a
platform-defined library of such functions?

Performance Orphal must deal with many
performance-related issues, such as support for multi-
core parallelism in switchlet execution; prioritizing CPU
sharing among switchlets; rate-limiting features of the
platform; etc. We have neither the experience nor the
space to discuss these further.

Portability Orphal must expose the platform’s hard-
ware details enough to support high performance, but
without exposing too much detail: that would compro-
mise portability, and perhaps isolation. This is a difficult
challenge, especially since we lack enough experience to
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know what really matters. We describe, in sec. 4, our ini-
tial experiences trying to map OpenFlow’s 10-tuple flow-
description model onto a TCAM that supports 5-tuples.

Manageability Routers must already address many
management issues, such as port and routing-protocol
configuration. The introduction of open router architec-
tures creates a new problem: given a multitude of sepa-
rately developed switchlets, how does the router admin-
istrator create and preserve a stable configuration?

XORP, for example, provides a “router manager pro-
cess” (rtmgr) [19] to handle some of these issues. Sup-
port for proprietary hardware probably complicates this
task, because the introduction of a new switchlet can cre-
ate new resource conflicts (e.g., not enough TCAM en-
tries) and new feature interactions (competing uses for a
given TCAM entry).

We believe the router manager will have to check that
the system can support the switchlet’s minimal require-
ments (e.g., that there are enough available TCAM en-
tries for the switchlet to function) and to provide rollback
to a previous configuration if a new one causes trouble.

The manager will also have to monitor each switch-
let’s dynamic resource consumption, including special-
ized hardware resources, so that the router administrator
can make informed decisions.

We also expect administrators will want to upgrade a
switchlet to a new version without rebooting the entire
router. This may require Orphal support, especially to
cleanly undo the hardware-related effects of an old (or
failed) switchlet. For example, when a switchlet fails or
is removed, its updates to the TCAM should be reversed.

2.1 What is a switchlet?

A switchlet is simply a module that runs on top of Orphal,
with its own address space and thread(s) of control.2 Or-
phal will support several switchlet categories, including:
• per-packet switchlets: These are invoked, simi-

larly to Click elements [10], to handle specific pack-
ets. Since high-performance router designs try to
avoid handling most packets in software, per-packet
switchlets are mostly useful for exceptional packets.
• per-flow switchlets: Some router functions, espe-

cially for monitoring and sometimes for firewalling,
are invoked once or a few times per flow. This
is less likely to cause performance problems, al-
though given mean flow lengths in the ballpark of
12 UDP packets to 50 TCP packets [2], such switch-
lets might still be reserved for exceptions.
• control-plane functions: These functions, such

as routing protocols, management protocols, etc.,
2Others have defined “switchlet” in different ways [1, 5, 17], but we

can’t think of a better term.

typically are not directly related to the packet-
forwarding fast path, and so are often handled in
software. XORP provides a useful framework for
these functions.
• optimizer/helper modules: We expect that the pro-

cess of matching higher-level abstractions needed
by switchlets to the lower-level hardware abstrac-
tions will require the use of optimization algo-
rithms. Orphal invokes these via upcalls to opti-
mizer switchlets. This form of policy-mechanism
separation allows third parties to develop improved
versions of these modules.
Optimizer modules can also be used, for example, to
provide a backing store for space-limited hardware
resources. For example, Orphal could manage the
hardware TCAM as a cache for a larger table man-
aged by an optimizer module, in much the same way
that an OS kernel manages a hardware Translation
Buffer as a cache for its page tables.
Additional “helper” switchlets can be used to pro-
vide policy-mechanism separation for functions
such as detecting inter-switchlet conflicts in TCAM
entries.

Orphal needs to balance switchlet portability against
aggressive use of hardware functions that might not be
present on all platforms. Thus, a switchlet can provide
an optional software implementation for a function, to
be used if Orphal cannot provide the necessary hardware
support (either because it isn’t there, or because it is over-
subscribed).

For example, consider a Click module, such as the
existing NetFlow package, that is most naturally imple-
mented in hardware if the hardware is available. The
module author could supply both a hardware-based (e.g.,
NetFPGA) version and a (less efficient) software-based
version, and Orphal could transparently instantiate the
most efficient version possible. (This leaves open the
question of whether Orphal could feasibly change be-
tween versions dynamically; state synchronization and
QoS maintenance might make this difficult.)

2.2 Example of Switchlets

We describe our initial experience implementing Open-
Flow, and how it might be structured as switchlet, in sec.
4. Beyond that, we lack space to give detailed examples
of possible switchlets, but here is a partial list:
• Specialized firewall switchlets could be triggered

by DPI hardware to check unusual flows against se-
curity policies.
• Specialized monitoring switchlets could report on

suspicious patterns of flow creations.
• NAT switchlets might require access to pro-

grammable packet-header rewriting hardware.
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• Dynamic VLAN switchlets could implement setup
protocols used to establish VLAN membership.

3 API DESIGN ISSUES

The goal of Orphal is to provide a clean interface
between router-specific programmable hardware, and
switchlets running on general-purpose CPUs within the
router platform. Routers often have a number of inter-
esting hardware features, such as programmable DPI en-
gines, TCAMs for route lookups, and other route-lookup
hardware such as hash tables and programmable header
extractors. Future routers might have additional spe-
cialized hardware, such as programmable packet-header
rewriters.

In this paper we limit our detailed discussion to
TCAMs, since they are widely used for high-speed for-
warding, present some interesting challenges, and are the
focus of our current implementation work (see sec. 4).

3.1 TCAM API and Resource Management

Most high-performance router hardware includes
Ternary Content Addressable Memories (TCAMs).
One can think of a CAM as a table whose rows each
include a tag field to match against; the CAM returns the
matching row (if any). In a TCAM, tag-field entries are
composed not just of binary 1s and 0s, but also “X” or
“don’t care” values. TCAMs thus allow more compact
representations of lookup tables whose tag values can
include wildcards. Routers use TCAMs for functions
such as IP address lookups and firewall lookups, where
these wildcards are common.

While TCAMs are often the preferred solution for
lookup functions, various TCAM parameters are con-
strained by expense (TCAM structures take a lot of
die area) and power consumption (a TCAM lookup
requires all rows to be active, and TCAMs consume
ca. 15W/chip [21].) Thus, TCAMs present some chal-
lenges for an open router platform, and we explore these
as an example of a larger set of challenges that the API
must meet:
• Limited tag-field size: TCAM tag widths are typ-

ically limited, often to ca. 144 bits (enough for
an IP/TCP 5-tuple) [14]. A single TCAM entry
might therefore be insufficient to support a firewall-
entry match in a single lookup, since (especially
with IPv6), too many packet-header bits must be
checked. This can force the hardware to support
multiple lookups per packet. The API must allow
switchlets to express such multi-lookup rules.
• Limited number of rows: TCAMs are typically

limited to a few thousand rows. Thus, the platform
must treat TCAM rows as a scarce resource, to be
allocated among potentially competing switchlets,

and the API must allow switchlets to express re-
source requirements.
• Multiple “owners” for one row: Two different

switchlets might want packets that match the same
TCAM row (e.g., “all TCP packets to port 80”); the
API needs to manage these conflicts. (See sec. 3.4.)
• Multiple matching rows: Because TCAMs sup-

port wildcards, two different rows might match the
same packet. But TCAM-based designs always re-
turn the lowest-index entry that matches the packet.
Two switchlets might create distinct TCAM entries
that either overlap, or where one covers the other;
what should the system do in this case? The API
needs to manage these conflicts, too. (See sec. 3.4.)
• TCAM optimization: Given an abstract set of

matching rules, one can generate an optimized set of
TCAM entries that provide the most compact (and
hence most space- and energy-efficient) representa-
tion [12, 14].
• TCAM update (insertion) costs: TCAM-based

designs generally must trade off efficient lookups
against insertion costs, which can be as high as
O(n) in the number of rows [6]. The API might
need to manage this tradeoff; it might also need
to synchronize between updates and lookups (or
else lookups could yield bad results during up-
dates) [18].

3.2 A typical TCAM-based hardware design

Figure 2 sketches part of an idealized TCAM-based hard-
ware design, to make some of these design challenges
concrete. Each line card would have an instance, possi-
bly serving several ports.

An incoming packet is first processed by a pseudo-
header generator, adding to the real packet header such
fields as a VLAN tag, the ID of the port where the
packet arrived, etc. Assuming that the TCAM is not
wide enough to do a full lookup in one step, the header
extractor manages a multi-stage lookup; it recognizes
certain high-level patterns (e.g., “IPv4 packet” or “IPv6
packet”), extracts the header fields used in each stage
(e.g., first the layer-2 headers, then the layer 3+4 head-
ers), passes these to the TCAM, and decides whether to
do the next lookup stage.

Many routers use one or more hash tables in addition
to the TCAM. Hash tables provide a cheaper mechanism
for doing exact-match lookups, such as “what’s the next
hop for this flow?”, while TCAMs are appropriate for
more complex lookups – especially those including wild-
cards – typical of QoS and firewall (access control list)
functions. For firewall functions, the line card might also
include a port-range classifier, since arbitrary ranges of
port numbers (e.g., “1023–65535”) could consume too
many TCAM entries. Liu [11] described a range classi-
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Figure 2: Idealized TCAM-based lookup path
fier that uses a modest-sized RAM-based lookup table.

Additional sequencer/combiner logic coordinates the
multiple lookup stages and combines partial results to
generate a final result, indicating the action to take with
the packet, such as the next-hop address and the output
switch port.

The TCAM, of course, is a programmable resource,
but potentially so are the other functional blocks
(pseudo-header generator, header extractor, port-range
classifier, hash table, sequencer/combiner).

Unlike a more abstract API such as XORP, Orphal ex-
poses all of these distinct programmable resources, since
they have differing characteristics that could be exploited
by sophisticated switchlets.

3.3 What should the TCAM API expose?

There are many ways to organize TCAMs and the asso-
ciated hardware, and if switchlets are to be portable be-
tween hardware platforms, the API must either hide this
variation, or expose it in a useful way. Given the chal-
lenges listed in section 3.1 (and there are others), perhaps
it is implausible to create an API that provides any gen-
erality across models and vendors. However, we suspect
that by choosing the right level of abstraction for expos-
ing the TCAM hardware, Orphal can meet its goals.

For example, XORP exposes a high-level “forward-
ing engine abstraction” (FEA), but Orphal must expose
a lower-level abstraction if the switchlets are to exploit
specialized hardware features. There are things that can-
not be expressed explicitly at the FEA level – for exam-
ple, that certain rules should be stored in the hash table
instead of the TCAM.

There is a useful API abstraction intermediate between
a raw-hardware “TCAM row” and a high-level “forward-
ing table entry.” Although a TCAM optimizer mod-
ule will need access to the raw row-level version (“put
these bits here”), most switchlets will use a paravirtu-
alized view of the TCAM (PV-TCAM), which will en-
able Orphal to provide the controlled sharing, isolation,
and resource management properties described in section
2. PV-TCAM rows look almost like real TCAM rows,
but with some additional meta-information, and without
a fixed mapping to actual hardware rows.

The TCAM-user API will need to provide certain
functions, including (among many others):
• tcamAddRow(tag, action, ordering): Used to add

a row with a given tag value and action, and an intra-
switchlet value to control how rules are ordered.
Returns either an opaque handle for the row, or a
failure indication.
• tcamDeleteRow(handle): does the obvious thing.
• tcamGetRow(handle): returns the corresponding

TCAM entry, including statistics.
• tcamRegisterInterest(handle, callbackFunc-

tion): specifies a switchlet function to be called
with each packet that matches the row; the default
is no callback. This is the way that switchlets can
receive packets and/or discover flows.
• tcamConflictCallback(handle, callbackFunc-

tion): If another, higher-priority switchlet creates a
TCAM row that conflicts with the one associated
with the handle, this callback informs the current
switchlet that the row has been reassigned to the
other switchlet’s purposes. Section 3.4 discusses
conflicts in more detail.

The TCAM-optimizer API will need to provide certain
functions, including (among many others):
• Loading a set of TCAM rows: The optimizer’s

output needs to be loaded into the TCAM; possi-
bly this will require some synchronization so that
packets are not processed when the TCAM is in an
inconsistent state.
• Obtaining the abstract state of the TCAM

database: The optimizer’s input from Orphal will
consist primarily of the union of the TCAM-user
requests, plus some policy settings provided by a
management layer.
• TCAM usage statistics: Typically, TCAMs sup-

port hit counters for each row.

3.4 TCAM row conflicts

Multiple switchlets might try to create conflicting TCAM
rows. Orphal’s approach is to detect these conflicts and
resolve them using an inter-switchlet priority ranking.
(This seems like the simplest approach, but we are ex-
ploring others.) When a low-ranking switchlet tries to
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create a new row that conflicts, Orphal simply rejects the
attempt. However, a high-ranking switchlet can create a
row that conflicts with an existing lower-ranking row, in
which case Orphal removes the low-ranking row, inserts
the new one, and informs (via tcamConflictCallback)
the low-ranking switchlet that it has lost the row. Orphal
lets the switchlets figure out what to do in that case.

It is not easy to define what a “conflict” is, and
conflict-checking is an expensive (NP-complete) pro-
cess [12], so checking should not be embedded in Or-
phal per se. Instead, Orphal supports plug-in conflict-
checking implementations using “helper” switchlets.

4 OUR EXPERIENCE WITH OPENFLOW

OpenFlow [13] is a centrally-managed flow-based net-
work where switches are simple forwarding engines that
classify packets into flows and act on them according to
a policy supplied by a central controller. We are port-
ing OpenFlow to a commercial switch, the HP ProCurve
model 5406zl, and here report some of the challenges.

OpenFlow could run entirely in the switch’s software,
but that would not support line-rate forwarding, so we
need to use the TCAM hardware. The controller ex-
pects a flexible flow classifier, so the tricky part is to
match OpenFlow’s flow descriptions (a 10-tuple of phys-
ical ingress port and VLAN IDs; Ethernet source, desti-
nation and type; and the standard IP/TCP 5-tuple) with
what the hardware supports. The challenges include:
• Limited number of TCAM rows: means not all

flows can be classified in hardware. So, we insert a
final wild card entry in the TCAM to divert packets
from other flows to the software stack. We try to
minimize such slow-path packets by keeping busy
flows in the TCAM.
• Limited tag-field size: TCAM widths (e.g., 144

bits) are typically chosen to support lookup on the
IP/TCP 5-tuple (32+32+16+16+8 = 104 bits).
OpenFlow’s 10-tuple, which includes 48-bit MAC
addresses, is too big for such TCAMs. However,
our switch supports multiple TCAM lookups/packet
at line rates, so we support the OpenFlow tuple with
a multi-stage lookup.

When a packet arrives for an unknown flow, the Open-
Flow forwards it to the central controller, which updates
that switch (and perhaps others) with new flow-specific
forwarding rules. Using Orphal, we could implement
OpenFlow as a switchlet that forwards no-match pack-
ets to the controller, and installs controller-supplied re-
sponses into the forwarding table. The controller deals in
10-tuples; we intend to use a helper switchlet to convert
these into patterns that the switch’s TCAM can handle.
This helper could also be used by other switchlets, such
as firewalls.

5 SUMMARY

Open router platforms offer tremendous flexibility, but
exploiting the rich variety of router hardware creates
complexity. Our goal for Orphal is to tame that com-
plexity; we hope to demonstrate working systems in the
near future.

REFERENCES
[1] D. S. Alexander and J. M. Smith. The Architecture of ALIEN. In

Proc. Intl. Working Conf. on Active Networks, pages 1–12, 1999.
[2] M. Arlitt. Personal communication, 2008.
[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker. Ethane: taking control of the enterprise. In Proc.
SIGCOMM, pages 1–12, Aug. 2007.

[4] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking
Packet Forwarding Hardware. In Proc. HotNets, Oct. 2008.

[5] N. da Fonseca, J. Castro, A.P., and A. Rios. A procedure for
resource allocation in switchlet networks. In Proc. GLOBECOM,
volume 2, pages 1885–1888, Nov. 2002.

[6] B. Gamache, Z. Pfeffer, and S. P. Khatri. A fast ternary CAM
design for IP networking applications. In Proc. ICCCN, pages
434–439, Oct. 2003.

[7] M. Handley, O. Hodson, and E. Kohler. XORP: an open platform
for network research. SIGCOMM CCR, 33(1):53–57, 2003.

[8] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.
Designing extensible IP router software. In Proc. NSDI, pages
189–202, Boston, MA, 2005.

[9] HP ProCurve. ProVisionT M ASIC: Built for the future. http:

//www.hp.com/rnd/itmgrnews/built_for_future.htm.
[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.

The Click Modular Router. TOCS, 18(3):263–297, 2000.
[11] H. Liu. Efficient Mapping of Range Classifier into Ternary-CAM.

In Proc. Hot Interconnects, pages 95–100, Aug. 2002.
[12] R. McGeer and P. Yalagandula. Minimizing Rulesets for TCAM

Implementation. Tech. Rep. HPL-2008-106, HP Labs, 2008.
[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-

terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling
innovation in campus networks. SIGCOMM CCR, 38(2):69–74,
2008.

[14] C. R. Meiners, A. X., and L. E. Torng. Algorithmic Approaches
to Redesigning TCAM-Based Systems. In Proc. SIGMETRICS,
June 2008.

[15] J. Mogul, R. Rashid, and M. Accetta. The packer filter: an ef-
ficient mechanism for user-level network code. In Proc. SOSP,
pages 39–51, 1987.

[16] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. A Program-
ming Model for Reusable Hardware in NetFPGA. In Proc.
PRESTO, Aug. 2008.

[17] J. E. van der Merwe and I. M. Leslie. Switchlets and Dynamic
Virtual ATM Networks. In Proc. 5th IFIP/IEEE Intl. Symp. on
Integrated Network Management, pages 355–368, 1997.

[18] Z. Wang, H. Che, and S. K. Das. CoPTUA: Consistent Policy Ta-
ble Update Algorithm for TCAM without Locking. IEEE Trans.
Comput., 53(12):1602–1614, 2004.

[19] XORP Project. XORP Router Manager Process (rtrmgr) Version
1.4. http://www.xorp.org/releases/1.4/docs/rtrmgr/

rtrmgr.pdf, 2007.
[20] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient

packet demultiplexing for multiple endpoints and large messages.
In Proc. USENIX Winter Tech. Conf., pages 153–165, 1994.

[21] F. Zane, G. Narlikar, and A. Basu. Coolcams: power-efficient
TCAMs for forwarding engines. In Proc. INFOCOM, volume 1,
pages 42–52, 2003.

For additional related work, please see an expanded version at http://www.
hpl.hp.com/techreports/2008/HPL-2008-108.html

12



Interference Avoidance and Control∗

Ramakrishna Gummadi∗ Rabin Patra† Hari Balakrishnan∗ Eric Brewer†
∗MIT CSAIL † UCB

ABSTRACT

The throughput of a wireless network is often limited by
interference caused by multiple concurrently active nodes.
The conventional approach of using a “one-transmission-at-
a-time” MAC protocol to combat interference leads to a sig-
nificant loss of achievable throughput compared to schemes
such as interference cancellation that keep all transmitters
active simultaneously. Unfortunately, interference cancella-
tion incurs significant computational complexity, and cannot
be implemented with commodity hardware.

In this paper, we propose a practical approach for improv-
ing the throughput of interfering nodes using variable-width
frequency allocation. We show that variable-width channels
provide significant theoretical capacity improvements, com-
parable to interference cancellation for infrastructure net-
works. We design an algorithm that reduces interference by
assigning orthogonal variable-width channels to transmit-
ters. We evaluate a prototype implementation of this algo-
rithm on an outdoor wireless network with ten long-distance
links configured into point-to-point and point-to-multipoint
topologies. We observe a throughput improvement of be-
tween 30% and 110% compared to the existing fixed-width
channel allocation.

1 INTRODUCTION

Our goal is to build wireless networks with high aggregate
throughput. So, extracting transmission concurrency is es-
sential. But there is a trade-off: higher concurrency generally
means higher interference. Previous work has been in one
of two areas: MAC protocols that attempt to extract concur-
rency, and interference cancellation and its variants [8, 11].

For 802.11 networks, existing MAC protocols such as
CSMA, Time-Based Fairness (TBF) [19] and CMAP [21]
regulate concurrent transmissions carefully to ensure that
collisions resulting from interference remain low. They al-
low only one transmitter to be active within a given chan-
nel at any time there is a risk of interference (i.e., when-
ever concurrent transmissions result in either packet being
lost). However, serializing interfering transmissions imposes
a fixed upper bound on the aggregate throughput, regardless
of the number of interfering transmitters. Therefore, the av-
erage throughput per transmitter decreases with the number
of interfering transmitters.

In contrast, interference cancellation (IC) deals with dis-
tinguishing between concurrently transmitted signals by de-

∗This work was supported by the National Science Foundation under
awards CNS-0721702 and CNS-0520032, and by Foxconn.

modulating and decoding all the interfering signals simulta-
neously. The theoretical concepts behind IC were developed
in the 1960s [7, 18], especially in the context of spread-
spectrum systems. Recently, researchers have investigated
IC and related alternatives such as interference alignment
and ZigZag decoding to mitigate the problems caused by in-
terference [4, 8, 11]. Unfortunately, such receivers involve
significant complexity because separating overlapping sig-
nals requires considerable signal processing. Moreover, the
running time of such algorithms grows at least linearly with
the number of concurrent transmissions a receiver overhears,
none of which might ultimately be intended for the receiver.

In this paper, we ask the following question: is it possi-
ble approximate the optimal throughput provided by IC us-
ing simpler techniques, and, if so, under what conditions?
We demonstrate a spectrum allocation algorithm that assigns
variable-width channels to transmitters and keeps all trans-
mitters active concurrently, thereby achieving a higher ca-
pacity than any fixed-width channel assignment scheme such
as CSMA or TBF. Our result suggests that we should control
interference while maintaining high concurrency.

The allure of using variable-width channels to control
interference is that commodity wireless chipsets, such as
Atheros and PRISM, support variable-width channels rang-
ing from at least 5 MHz to 40 MHz [12, 13]. Recently,
Moscibroda et al. [13] have studied variable-width channels
to improve network throughput by allocating spectrum to
APs (Access Points) based on their load. Similarly, Chan-
dra et al. [5] have studied variable-width channels to im-
prove a single link’s throughput and energy efficiency. Here,
we study variable-width channels for their ability to im-
prove throughput among multiple interfering transmitters
with backlogged flows (i.e., flows which always have some
data to send).

We show that, for infrastructure networks, using orthog-
onal variable-width channels on the uplink from the clients
to the AP not only achieves the optimum sum-capacity of
n concurrent transmitters predicted by Shannon’s theorem,
but also improves the aggregate throughput over any fixed-
width TDMA scheme such as CSMA or TBF by an addi-
tional Θ(log2(n)) bits/s/Hz. The intuition is that maintain-
ing the transmitters on non-overlapping channels theoreti-
cally eliminates interference, while narrowing their channel
widths allows the total transmitted power to be the sum of all
transmitters. Thus, the aggregate transmit and received pow-
ers are increased, without adding interference. We believe
that this approach also exhibit good gains for mesh networks,
though we do not discuss that setting in this paper.
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We use this intuition to develop a spectrum allocation
scheme called VWID (Variable WIDth channels). When
there aren concurrent transmissions on a given channel,
VWID attempts to split the spectrum inton non-overlapping
variable-width channels. The width of each channel is al-
located to maximize each transmitter’s throughput, sub-
ject to the constraint that no interfering transmitter receives
lower throughput than it would have with fixed-width allo-
cations. Thus, VWID provisions spectrum to reduce inter-
ference specifically, and complements MAC protocols such
as CSMA that provide additional functionality such as ACKs
and retransmissions to deal with both noise and interference.

We have implemented a VWID prototype and conducted
a preliminary evaluation on an outdoor wireless testbed con-
sisting of ten medium to long-distance links deployed in an
urban area. We configured the testbed into point-to-point and
point-to-multipoint topologies, thus representing networks
typically encountered in rural point-to-point [15] and point-
to-multipoint [16] settings. Even though our implementa-
tion is unoptimized, we find that VWID provides per-node
throughput improvements ranging from 30%–110% by pro-
visioning orthogonal variable-width channels to reduce in-
terference.

2 VARIABLE-WIDTH CHANNELS IMPROVE

THROUGHPUT

We analyze the throughput improvement produced by en-
couraging multiple concurrent transmissions using orthog-
onal variable-width channels compared to TDMA schemes
such as CSMA and Time-Based Fairness (TBF) that use
fixed-width channels. Using variable-width channels and en-
abling concurrent transmissions on these channels always in-
creases the aggregate throughput compared to using fixed-
width channels, because the total transmitted and received
powers are increased, while interference is still kept in check.
We can also address inter-node fairness by using sufficient
channel widths that guarantee that every transmitter obtains
at least the throughput it obtains under the original fixed-
width allocation.

We consider a single cell withn clients and an AP. The
AP has a single radio and antenna. Our primary result is
that providingn concurrent transmissions between the AP
and then clients using orthogonal variable-width channels,
whose width is proportional to received SINRs (signal to in-
terference plus noise), can achieve higher aggregate through-
put (by an additionalθ(log2(n)) bits/s/Hz) beyond the status
quo.

Assume that the transmissions between the the clients
and the AP are in the uplink, and that there is demand on
all n links. Consider two backlogged transmitters 1 and 2
whose signals are received with powersP1 andP2. The re-
ceiver noise power isN per Hz. If transmitter 1 alone is ac-
tive, the capacityC1 of 1, assuming a Gaussian channel, is
given by the Shannon-Hartley theorem:C1 = log2(1+ P1

N )

P2

P1+N
1+log( )

N

P2
1+log( )

P1

P +N
1+log( )

N

P1
1+log( )

R1

R2

(bits/s/Hz)

(bits/s/Hz)

A

C B

P2+N
N

Figure 1: Achievable throughputs and the optimal capacity pentagon.

bits/s/Hz [7, 20]. Transmitter 1 can achieve any throughput
rateR1 that is less thanC1 [7, 20].

If both 1 and 2 are concurrently active, the theoretical ca-
pacity achievable by the two users simultaneously is called
the sum-capacity. It consists of all throughput rate pairs
(R1,R2) such that:

R1 < log2(1+
P1

N
) bits/s/Hz,

R1 < log2(1+
P1

N
) bits/s/Hz,

R1 +R2 < log2(1+
P1 +P2

N
) bits/s/Hz. (1)

The achievable rates boundary, called the Cover-Wyner pen-
tagon [1], is shown in Figure 1. The line segment A–B with
slope−1 represents the optimal sum-capacity and is given
by R1 + R2 = log2(1+ P1+P2

N ). The reason is that, no matter
how the two users code their transmissions, independently
or cooperatively, it is not possible for them to exceed the ca-
pacity limit that occurs when there is a single user with total
received powerP1+P2. If both transmitters send on same fre-
quencies, the rate pair at point A on the optimal sum-capacity
segment in Figure 1 can be achieved by successive interfer-
ence cancellation, in which the receiver first treats 2’s signal
as noise, recovers 1’s signal, subtracts 1’s signal from the
total signal, and finally decodes 2’s signal. Point B is vice-
versa.

If we use variable width channels for 1 and 2 such that the
total width is equal to the spectrum available to the receiver,
we achieve non-interfering throughput rates for 1 and 2 that
are given by:

R1 < α log2(1+
P1

αN
) bits/s/Hz,

R2 < (1−α) log2(1+
P2

(1−α)N
) bits/s/Hz. (2)

whereα is the fraction of the spectrum allocated to 1 (0≤
α ≤ 1). The noise term forR1 in Equation 2 is reduced by
a factorα because the signal is now confined to a narrower
band, while noise still occupies the entire band with power
N per Hz.
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Theorem 2.1. If transmitters 1 and 2 are continuously back-
logged, then the aggregate throughput achieved with vari-
able width channels is strictly higher than that with any
TDMA scheme such as CSMA or TBF.

Proof. The total rateR is given by:

R = R1 +R2

= α log2(1+
P1

αN
)+(1−α) log2(1+

P2

(1−α)N
) bits/s/Hz.

MaximizingR by setting d
dα R = 0 givesα = P1

P1+P2
, at which

valueR = log2(1+ P1+P2
N ) bits/s/Hz, which is optimal. Thus,

we achieve the optimal throughput when transmitters are as-
signed channel widths proportional to their received power
at the AP.

But no TDMA scheme, such as CSMA or TBF, is optimal
(i.e., its throughput does not lie on the A–B segment)
because TDMA only keeps one transmitter active at a time,
thereby reducing the total transmitted and received powers.
In particular, we calculate the CSMA and TBF throughputs
below.

CSMA throughput. To a first order, CSMA allows equal
number of channel accesses to nodes. The total achievable
capacity under CSMA is as follows: Transmitter 1 takes1

R1

time to send a bit, while 2 takes1R2
time to send its bit. Thus,

CSMA sends 2 bits in time 1
1

R1
+ 1

R2

. Thus, CSMA rate is

2
1

1
R1

+ 1
R2

= 2R1R2
R1+R2

≤

√

R1R2 because the arithmetic mean of

two positive numbers is not smaller than the geometric mean.
SubstitutingR1 = log2(1+ P1

N ),R2 = log2(1+ P2
N ), we find

that this rate is less than the optimal rateR = log2(1+ P1+P2
N ).

Moreover, the relative performance of CSMA to optimal
can be seen to be arbitrarily bad if, say,P1 << P2, because
transmitter 1 ends up monopolizing the channel.

TBF Throughput. TBF allows equal channel access and
fares better than CSMA, but its capacity is also lower
than the optimal power-proportional variable-width alloca-
tion. This is because, in one second, transmitter 1 sends
R1 bits and transmitter 2 sendsR2 bits. So, the achieved
rate=R1+R2

2 < R = log2(1+ P1+P2
2 ), again using basic alge-

bra. In the worst case (i.e., whenP1 << P2), TDMA’s rate
is half the optimal power-proportional allocation with two
transmitters.

To obtain more insight into how concurrent transmissions
improve throughput, consider an example with two transmit-
ters t1, t2 whose SINRs at the receiver are 1 each. So,t1
andt2 achieve a throughput of log2(1+ 1) = 1 bit/s/Hz in-
dividually. When they transmit concurrently, a MAC such as
CSMA shares the channel by time-division multiplexing it,
so that each transmitter achieves a rate of 0.5 bit/s/Hz. On the
other hand, dividing the channel into two and makingt1 and
t2 transmit concurrently allows each transmitter to achieve

R1

R2

(bits/s/Hz)

(bits/s/Hz)

1

1

(R1,R2)=(0.5, 0.5)
bits/s/Hz

(R1,R2)=(0.79,0.79)
bits/s/Hz

CSMA

Variable-width channels

Figure 2: Throughputs of two transmitters when SINR=1.

a throughput of1
2 log2(1 + 2) = 0.79 bit/s/Hz, as shown

in Figure 2. Each transmitter thus improves its throughput
by about 30%, while the aggregate throughput increases by
about 60%. Moreover, this throughput gain of variable-width
channels relative to CSMA increases both with the imbal-
ance between the received signal strengths of the concurrent
transmitters, and with the number of concurrent transmitters.
For example, ift1 is 8 times (or 9 dB) stronger thant2 (which
can happen frequently with 802.11), the throughput improve-
ment with variable-width channels increases to more than
2×.

Variable-width channels not only achieve higher through-
put than any TDMA scheme with two concurrent trans-
mitters, but we can also show that,n concurrent transmit-
ters using variable-width channels can improve their ag-
gregate throughput by an additionalθ(log2(n)) bits/s/Hz
over TDMA. The reason is that the aggregate capacity of
n transmitters using variable-width channels is log2(1+ nP

N )
bits/s/Hz, assuming that the received powersP of all trans-
mitters are equal. But TDMA schemes can only achieve a
capacity of log2(1+ P

N ) in this case. So, for largen, variable-
width channels provide an additionalθ(log2(n)) bits/s/Hz in-
crease in aggregate capacity.

3 VWID DESIGN AND IMPLEMENTATION

Using the insight that variable-width channels improve
throughput, we develop an initial version of a variable-width
channel assignment algorithm called VWID.

Our platform consists of high power Atheros 802.11a
Ubiquiti XR5 radios (600 mW) that work in the 5 GHz
spectrum. We the Ubiquiti radio driver that allows vari-
able channel widths (5, 10 and 20 MHz). While the nor-
mal 20 MHz-wide channel supports a maximum bit-rate
of 54 Mbps according to the 802.11a standard, the half-
width (i.e., 10 MHz) channel supports up to 27 Mbps,
while the quarter-width (i.e., 5 MHz) channel supports up
to 13.5 Mbps. In practice, we find that the achievable UDP
throughput for outdoor links in our testbed is about 10 Mbps,
due to interference [6] and multipath [2]. We found that both
10 MHz and 20 MHz channels attain this throughput, and
that the 5 MHz channel obtains more than 8 Mbps.

Given a chunk of spectrum and a set of mutually inter-
fering links, VWID assigns non-overlapping variable-width
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Algorithm 3.1: ALLOCCHANNELS(InterferingLinksn)

Step 1 : Measure throughputt[i] of each linki with n interferers
Step 2 :for j← 0 to n−1

do
{

Step 3 : Measuret ′[i,c] of link i, channelc in
(n

j

)

choices
Step 4 : ift ′[i,c] < t[i] eliminate channelc

Step 5 : Return the channelc with highestt ′[i,c] for each linki

Figure 3: VWID channel selection algorithm.

(i.e., 5, 10 or 20 MHz) channels to these links so as to control
interference. VWID only decreases the channel width for a
link if doing so increases its throughput, thereby maintaining
fairness. However, even with the fairness constraint, because
VWID keeps every transmitter active while controlling inter-
ference, we find that per-node throughputs are higher for all
links in many (> 90%) scenarios, although these throughputs
may be lower than those without the fairness constraint.

Our current implementation of VWID assigns variable-
width channels to links within a single 20 MHz channel.
The current best practice is to operate outdoor long-distance
point-to-point or point-to-multipoint networks on a single
channel because of spectrum scarcity, hardware limitations,
and ease of management [3, 14, 15, 16]. So, while VWID
can in principle handle any amount of spectrum, we have
only instantiated and evaluated VWID for selecting 5, 10 or
20 MHz channel widths for a link.

In addition to selecting the channel width, VWID must
also select the channel positions for 5 and 10 MHz channels
within the 20 MHz channel. For example, assigning 5 MHz
channels at 5.185 GHz and 5.195 GHz for two interfering
links might be better in practice than assigning channels at
5.185 GHz and 5.19 GHz, because the former provides more
channel separation even if neither provides perfect orthog-
onality. So, for every link, VWID considers 4 choices for
placing 5 MHz channels and 2 choices for placing 10 MHz
channels, in addition to retaining the 20 MHz channel option.
So, we have seven channel choices for each link.

VWID measures the throughput of each link for the seven
channel-width choices under interference from other inter-
fering links, and picks the channel and channel width that
provides the highest throughput for that link. While we have
shown that a power-proportional channel width allocation
is optimal (§2), since commodity cards do not report SINR
measurements accurately, we use throughput measurements.
While the worst-case complexity of VWID is 7n for n in-
terfering links, we can prune the search space because we
can reject channel widths and link combinations that violate
the fairness constraint. For example, if a 5 MHz-wide chan-
nel tested under no interference is unable to provide more
throughput than with a 20 MHz channel under interference,
we can reject it immediately from all possible combinations
with other links. Thus, in practice, VWID is efficient (for
example, it only considers 16 combinations for four interfer-

Figure 4: A point-to-multipoint topology configured on the outdoor testbed.

ing links used in §4). The pseudocode for VWID is shown
in Figure 3. We defer the study of a more efficient channel-
width assignment algorithm and its run-time dynamics such
as measurement overhead, channel allocation effectiveness
and stability for future work.

4 EVALUATION

We ran our experiments on our campus testbed, which con-
sists of 6 wireless nodes and 10 links, 8 of which ranged
from 1 km to 4 km 4, and 2 of which are co-located be-
tween different radios at P (Figure 4). Subsets of these links
interfere with one another at either end-point, and each link
interferes with at least one other link. The wireless nodes are
based on 266 MHz x86 Geode single board computers run-
ning Linux kernel 2.6.19.2. The node at P has three wireless
radios, the one at B has two radios and all the other nodes
(S, B, E and Y) have one radio each. The nodes have di-
rectional antennas of 25 dBi gain. However, because of the
relatively short distances involved, we were able to config-
ure the links into various topologies such as point-to-point
and point-to-multipoint by assigning the right transmit pow-
ers to the links. We selected a fixed bit-rate for each radio
based on the maximum sustainable throughput (i.e., without
getting disconnected after a while) across all its links.

We chose this outdoor setup because researchers have
observed that interference imposes significant limits on
achieved throughput, regardless of the supported bit-
rates [6]. We modified the base driver to give us more
control over MAC layer parameters such as disabling of
ACKs, and changing the retransmission and Clear Channel
Assessment (CCA) behavior. We experimented with vari-
ous CCA settings that regulate the backoff behavior based
on detected energy from concurrent transmissions. We dis-
abled the CCA altogether and also varied the CCA energy-
detection threshold between the card’s minimum and max-
imum values. We measured unidirectional UDP and (bidi-
rectional) TCP throughput under various CCA, ACK, and
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Figure 5: VWID increases CSMA throughput by 30%–110%.

40

50

60

70

80

90

100

P
e
rc
e
n
ti
le
 R
a
n
k

No VWID 
Point-Point

No VWID Point-Multipoint

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24

P
e
rc
e
n
ti
le
 R
a
n
k

Loss Rate (%)

VWID Point-Point

VWID 
Point-Multipoint

Point-Point

Figure 6: Loss rates correlate inversely with throughputs.

retransmissions configurations. We present results for UDP
throughput with and without VWID under CSMA with the
default ACKs, CCA and retransmission settings, because it
achieved the highest throughput while maintaining fairness.
While MAC configurations with CCA or ACKs switched off
provide higher throughput for stronger links, they are either
unstable or highly unfair to weaker links, so we do not con-
sider them here.

Figure 5 shows the bi-directionally averaged percentile
throughputs of one-way UDP flows across ten links as
a CDF, and Figure 6 shows the corresponding loss rates
as a CDF. Our main result is that, except for a high-
throughput local link between two radios at node B, VWID
improves throughput between 30%–110%. The highest im-
provements are for low-throughput links in low-throughput
point-multipoint networks, because they suffer most from in-
terference effects. So even modest interference relief is sig-
nificant, which is a desirable outcome. While CCA mitigates
some collisions, seven of the links have hidden terminals,
leading to collision losses. The loss rates results exhibitgood
inverse correlation with the throughput plots and confirm
that VWID controls interference and reduces losses, even if
it means assigning narrower-width but orthogonal channels.
Links in the point-multipoint topology show the biggest im-

provement, followed by point-point links. The reason is that
point-multipoint links are forced to share bandwidth if there
are not enough radios at the APs (which is the case with APs
at location P in Figure 4).

We also observed that, although TCP obtains lower
throughput than UDP, its relative gains with VWID are
higher. The reason is that the impact of reduced interfer-
ence is more significant, as in the case with point-multipoint
links in Figure 5. While we have used VWID with a CSMA
MAC because it provided the highest throughput in our
setup, our results are also applicable to new MAC proto-
cols based on TDMA [15, 17] that have been proposed
to avoid interference and provide concurrency with links
tens of kilometers long. The motivation behind these these
TDMA protocols is that nodes with multiple wireless ra-
dios operating on the same wireless channel are constrained
from transmitting on one radio while simultaneously receiv-
ing on another radio. While this scheduling eliminates colli-
sions, it forces the wireless nodes to synchronize their trans-
missions on all their outgoing links (and, similarly, recep-
tions), thus making the scheduling of links and flow alloca-
tion more difficult [14]. We found that VWID creates more
non-overlapping variable-width channels that relieves this
scheduling pressure.

5 RELATED WORK

Current networks use either interference suppression on a
packet-by-packet basis using MAC protocols [10, 14, 15, 16,
19, 21], or cope with interference using interference cancel-
lation and related techniques such as interference subtrac-
tion, interference alignment and ZigZag decoding [4, 7, 8,
11, 18, 20, 22]. We have introduced the idea of interference
control as a potential practical alternative, in which multiple
transmitters operate concurrently, but take precautions to en-
sure they do not interfere with one another significantly. We
use variable-width channels to achieve interference control,
and ensure their orthogonality to avoid interference further.

While commodity hardware has supported variable-width
channels out of necessity of narrow-width operation outside
the unlicensed bands, this potential seems to have been rec-
ognized only recently. Moscibroda et al. [13] have used them
for adjusting an AP’s channel width based on load, while
Chandra et al. [5] have examined their properties in detail
for the single-link case. We complement them by examining
interference control using variable-width channels. As newer
standards such as 802.11-2007 mandate narrow-width chan-
nels even in unlicensed bands, we can expect more commod-
ity hardware to offer variable-width channel support.

6 CONCLUSIONS AND FUTURE WORK

We have shown that maintaining high concurrency by keep-
ing multiple transmitters active concurrently, while control-
ling interference, increases the total system power with-
out increasing interference, and hence increases aggregate
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throughput. We have examined the theoretical and practi-
cal potential of controlling interference using variable-width
channels. We have developed and implemented a prelimi-
nary channel allocation algorithm called VWID based on in-
sights from a theoretical analysis of infrastructure networks.
We evaluated VWID on a small campus testbed of outdoor
links configured into point-to-point and point-to-multipoint
topologies, and observed up to 2x throughput improvements
with narrower-width but orthogonal channels that reduce in-
terference, and, consequently, packet losses.

Our analysis and evaluation of variable-width channels are
by no means complete, and point to several pieces of fu-
ture work. First, while we believe our analysis extends to
mesh networks, we would like to characterize the capac-
ity region of mesh networks with variable-width channels.
Further, our current VWID algorithm is simplistic, in that it
uses a brute-force algorithm that has exponential worst-case
complexity. We are currently enlarging the campus testbed
and deploying VWID to carry real Internet traffic to resi-
dential users. We also plan to deploy VWID in wireless net-
works used in developing regions that we have access to,
and learn more about the strengths and weaknesses of in-
terference control. Also, in an accompanying paper [9], we
study throughput improvement strategies for bursty traffic
using spread-spectrum codes, and we plan to extend them
to variable-width frequencies.

Acknowledgments. We thank Mythili Vutukuru and the
anonymous reviewers for their valuable comments.

REFERENCES

[1] R. Ahlswede. Multi-way communication channels. In
ISIT’71.

[2] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Archi-
tecture and evaluation of an unplanned 802.11b mesh
network. InMobiCom’05.

[3] S. Biswas and R. Morris. Opportunistic Routing in
Multi-Hop Wireless Networks. InHotNets’03.

[4] V. Cadambe, S. A. Jafar, and S. Shamai. Interference
alignment on the deterministic channel and application
to fully connected AWGN interference networks. Nov
2007. URLhttp://arxiv.org/abs/0711.2547v1.

[5] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghaven-
dra, and P. Bahl. A case for adapting channel width in
wireless networks. InSIGCOMM’08.

[6] D. Gokhale, S. Sen, K. Chebrolu, and B. Raman. On
the feasibility of the link abstraction in (rural) mesh
networks. InINFOCOM’08.

[7] A. Goldsmith. Wireless Communications. Cambridge
University Press, 2005.

[8] S. Gollakota and D. Katabi. ZigZag decoding: Com-
bating hidden terminals in wireless networks. InSIG-
COMM’08.

[9] R. Gummadi and H. Balakrishnan. Wireless networks

should spread spectrum based on demands. InHot-
Nets’08.

[10] R. Gummadi, R. Patra, S. Nedevschi, S. Surana, and
E. Brewer. A radio multiplexing architecture for high
throughput point to multipoint wireless networks. In
WiNS-DR’08.

[11] D. Halperin, J. Ammer, T. Anderson, and D. Wether-
all. Interference Cancellation: Better receivers for a
new Wireless MAC. InHotNets’07.

[12] HFA3863 Baseband Processor Data Sheet,
http://pdos.csail.mit.edu/decouto/papers/
802-11-docs/hfa3863.ps.

[13] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, and
P. Bahl. Load-aware spectrum distribution in wireless
LANs. In ICNP’08.

[14] S. Nedevschi, R. Patra, S. Surana, S. Ratnasamy,
L. Subramanian and E. Brewer. An adaptive, high
performance MAC for long-distance multihop wireless
networks. InMobiCom’08.

[15] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subra-
manian and E. Brewer. WiLDNet: Design and imple-
mentation of high performance WiFi based long dis-
tance networks. InNSDI, 2007.

[16] R. Patra, S. Surana, S. Nedevschi, and E. Brewer. Op-
timal scheduling and power control for TDMA based
point to multipoint wireless networks. InNSDR, 2008.

[17] B. Raman and K. Chebrolu. Design and Evaluation of
a new MAC Protocol for Long-Distance 802.11 Mesh
Networks. InMOBICOM’05.

[18] P. Stavroulakis. Interference suppression techniques: A
twenty-year survey.International Journal of Satellite
Communications and Networking, Vol. 21, No. 1, 2003.

[19] G. Tan and J. Guttag. Time-based fairness improves
performance in multi-rate WLANs. InUSENIX’04.

[20] D. Tse and P. Viswanath.Fundamentals of wireless
communication. Cambridge University Press, 2005.

[21] M. Vutukuru, K. Jamieson, and H. Balakrishnan. Har-
nessing Exposed Terminals in Wireless Networks. In
NSDI’08.

[22] L.-L. Xie and P. R. Kumar. A network information the-
ory for wireless communication: Scaling laws and op-
timal operation. InIEEE Transactions on Information
Theory, Vol 50, No. 5, 2004.

6

18



Wireless ACK Collisions Not Considered Harmful
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ABSTRACT

We present an acknowledged anycast primitive that al-

lows a node to wirelessly transmit a packet and effi-

ciently determine that at least one neighbor successfully

received it. The initiator transmits a single packet to a

unicast, multicast, or broadcast address and all nodes

that match the destination respond with identical ac-

knowledgment packets automatically generated by the

hardware. Although these acknowledgments interfere,

they usually do so non-destructively, so the initiator can

decode their superposition. We call such an exchange a

Backcast and show that this operation is feasible using

a commodity radio, general because it enables multiple

network services, efficient because it is independent of

the neighborhood size and runs in constant time, and

scalable because it works with no fewer than a dozen

interfering acknowledgments.

1 INTRODUCTION

Anycast is a fundamental and widely used communica-

tions primitive that allows a node to send data to any

one of several potential recipients. One challenge with

providing an acknowledged anycast service efficiently is

that the initiator may not know a priori which neighbors,

if any, would acknowledge a transmitted packet. The

initiator generally has two options in this case. One op-

tion is to contact neighbors sequentially, assuming that

they are even known in advance. Unfortunately, this ap-

proach is inefficient since it scales poorly with node den-

sity. The other option is to contact all neighbors at once,

perhaps using a link layer multicast or broadcast ad-

dress. This approach is confronted with the well-known

ACK implosion problem in which a potentially arbitrary

number of neighbors can result in an arbitrary number of

replies. Wireless networks further exacerbate this prob-

lem because hidden terminals can lead to collisions that

corrupt packets, reduce bandwidth, and waste energy.

Imagine, however, if acknowledged anycast could

be implemented efficiently: an initiator would trans-

mit a single packet to a multicast or broadcast address,

all nodes that match the destination address would ac-

knowledge the packet concurrently, and the initiator

would correctly decode the superposition of multiple ac-

knowledgments to learn that at least one node received

the packet despite the obvious ACK collisions. We term

such an exchange a backcast and suggest that it could

offer a wireless Boolean OR service abstraction: a node

could pose a true or false question to its neighbors and

each neighbor would vote false by ignoring the packet or

true by acknowledging it. Section 2 hypothesizes how

such a service could work.

Furthermore, a reliable, efficient, and scalable ac-

knowledged anycast service would enable or improve

multiple applications. For example, a low-power, net-

work wakeup service would be possible [7]. A low-

power, receiver-initiated unicast service that eliminates

the long preambles common in today’s low-power lis-

tening protocols would also be feasible [8]. Finally,

single-hop collaborative feedback [3] would benefit

from the OR semantics of acknowledged anycast. Sec-

tion 3 discusses these and other backcast applications.

Section 4 explores the veracity of our thesis – that

an acknowledged anycast service can be implemented

efficiently – via a range of experiments based on the

IEEE 802.15.4-compliant CC2420 radio [11]. The re-

sults show that a commodity radio can decode the super-

position of at least a dozen identical acknowledgments

with greater than 97% probability. These results suggest

that an efficient and robust one-hop anycast service that

does not suffer from ACK implosion is possible with at

least the O-QPSK modulation scheme used in 802.15.4.

Our results suggest some important relationships be-

tween the signal strength and quality of acknowledg-

ments, number of responders, and delay variation. In

a controlled experiment with equal path loss and round

trip times between the initiator and responders, we find

that the two-responder case exhibits slightly worst sig-

nal quality and reception rates than all other cases. Sec-

tion 5 discusses these results in greater details and ar-

gues that the well-known capture effect does not explain

the surprisingly robust performance of backcast.
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2 BACKCAST

A backcast is a link-layer frame exchange in which a

single radio frame transmission triggers zero or more

acknowledgment frames that interfere non-destructively

at the initiator. Figure 1 illustrates a backcast exchange

involving three nodes. The two responders have their

radios configured to automatically acknowledge any re-

ceived frames. The backcast exchange begins with the

initiator transmitting a probe frame to the hardware

broadcast address. Both responders receive the probe

and they both transmit identical acknowledgments. Al-

though these two acknowledgments collide at the initia-

tor, as long as certain conditions are met, this collision

is non-destructive, allowing the initiator to correctly de-

code the acknowledgment frame and conclude that at

least one of its neighbors responded.

In addition to the broadcast address, a backcast probe

can be sent to a multicast or unicast address, to which

only a subset of the initiator’s neighbors might respond.

The choice of the destination address of a backcast

probe depends on the radio’s capabilities as well as the

needs of the communications service using backcast.

For example, the hardware broadcast address might be

appropriate when waking up an sleeping network while

a unicast address would be appropriate for communica-

tions with a single node.

The key to a successful backcast is that ACK colli-

sions are non-destructive. This condition can hold due

to power capture if one ACK frame has a higher power

than the sum of the remaining ACK frames [1], or delay

capture if one ACK frame arrives some period of time

before the rest [2], or message retraining capture – a

“message in message” model – where the radio attempts

to resynchronize mid-packet if it detects a suddenly el-

evated energy level [6], or trivially if the radio uses an

on-off keying (OOK) modulation scheme [10].

The central hypothesis of this paper is that backcast

is possible under a much wider range of conditions than

what capture would predict. In particular, we hypothe-

size that backcast is possible using minimum shift key-

ing (MSK) and orthogonal quadrature phase shift key-

ing (O-QPSK) modulation schemes for certain radio de-

signs provided that: (i) inter-symbol interference result-

ing from different path lengths is limited, (ii) concurrent

ACK frames do not cancel each other at the physical

layer, (iii) the radio can automatically generate an ACK

frame with an accurate and precise turnaround time, and

(iv) the superposition of multiple ACKs is semantically

meaningful (e.g., the ACKs are identical). Despite this

list of constraints, Section 4 shows that backcast works

in practice under a range of both controlled and realistic

conditions using a commodity radio.
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Figure 1: A backcast exchange involving three nodes. The backcast

initiator transmits a probe frame that two responders acknowledge. Al-

though their acknowledgments collide, they do so non-destructively,

so the initiator can decode the resulting frame.

3 BACKCAST APPLICATIONS

In this section, we demonstrate the generality of back-

cast by applying it to some important network services.

3.1 Low-Power Asynchronous Wakeup

Waking up a multi-hop network of duty-cycled nodes

is a fundamental problem in sensor networks. Appli-

cations as diverse as interactive data collection, excep-

tional event detection, and target tracking require nodes

to wake up neighbors or even the entire network.

Dutta et al. proposed one approach to this prob-

lem [4]. In their scheme, every node periodically trans-

mits a beacon and then briefly listens for channel activ-

ity (either a packet or increased energy). If any chan-

nel activity is detected, the node remains awake, but if

no activity is detected, the node goes back to sleep. To

wake up the network, the initiator listens for a time equal

to the beacon period to identify all one-hop nodes. Then,

during the next such period, the initiator contacts each

of its one-hop neighbors in turn. These neighbors then

repeat this process for the two-hop neighbors, and so

on. If two or more nodes attempt to contact the same

node in a lower tier, the paper conjectured that the con-

current transmissions may collide, but that the receiver

would detect channel energy, remain awake, and give

the transmitters a chance to enter backoff and compete.

Musăloiu-E. et al. proposed low power probing (LPP)

as another solution to the wakeup problem [7]. Accord-

ing to the LPP protocol, nodes periodically broadcast

short probes requesting acknowledgments. If such an

acknowledgment arrives, the node wakes up and starts

acknowledging other nodes’ probes; otherwise it goes

back to sleep. The key difference between the two ap-

proaches is that the responses in the first approach are

software-generated, while LPP uses hardware acknowl-

edgments (HACKs). What is surprising is that LPP

works even if a node has many neighbors, a case in

which multiple acknowledgments would collide. In fact,
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Figure 2: A side-by-side comparison of LPL and LPP operations.

LPP replaces LPL’s long preamble with listening and LPL’s clear

channel assessment with a backcast exchange.

LPP implicitly uses backcast to sidestep ACK implo-

sions but the paper does not recognize this fact – some-

thing that this paper identifies.

LPP, which uses backcast, is more efficient than

Dutta’s proposal. The reason is that LPP does not suf-

fer from (destructive) collisions and thus does not enter

a contention phase. Furthermore, since distinguishing

between collisions and other sources of noise or inter-

ference is difficult, such an approach could exhibit high

false positives in practice. This observation suggests

that Dutta’s approach might perform poorly in dense

networks deployed in interference-rich environments.

3.2 Low-Power Unicast

Polastre et al. proposed low power listening (LPL),

a widely-adopted technique for low duty-cycle com-

munications. An LPL receiver periodically checks for

channel energy and stays awake upon detecting activity,

while a transmitter prepends a packet with a preamble

that is at least as long as the receiver’s check period [8].

While LPL was designed to wake up individual nodes,

LPP was designed to wake up the whole network [7].

We now come full circle by describing how LPP can be

modified to wake up individual nodes and thus provide

the same unicast service abstraction as LPL, while using

a receiver-initiated protocol.

Directly replacing LPL with LPP, as Figure 2 illus-

trates, is possible yet inefficient. In the LPP proto-

col, a receiver transmits a probe packet to the hard-

ware broadcast address and the sender responds with

a HACK, causing the receiver to stay awake to receive

a data packet. The problem with this approach is the

sender’s radio will acknowledge every probe it receives

since they are sent to the broadcast address. In turn, this

causes all but one of the sender’s neighbors to wake up

unnecessarily. Let us call this the overreacting problem.

LPP can be modified to avoid the overreacting prob-

lem as follows. When a sender X has pending traffic

for a receiver Y , X enables its radio’s hardware ad-

dress recognition and sets its radio’s hardware address

to Y + k (where k is 0x8000 or 0x800000000000).
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Figure 3: Total number of successful rendezvous, predicted by the

birthday paradox, over different time intervals as a function of neigh-

borhood size. The black dot represents the daily average number of

rendezvous recorded on a 30-node testbed. In all cases the probing

interval is 20 seconds and a single backcast lasts ∼20 msec.

Now, instead of broadcasting a probe, receiver Y sends a

probe to destination address Y +k, requesting a HACK.

Sender X (as well as any other nodes with pending traf-

fic to Y ) respond to the probe (multiple HACKs inter-

fere non-destructively). If its probe is acknowledged, Y

remains awake to receive a packet while sender X does

not succumb to the overreacting problem.

3.3 Opportunistic Rendezvous

In the services outlined so far, backcasts are used as

purely control traffic: signals to wake up nodes or alerts

for inbound traffic. In this respect, backcast messages

carry no application-level information. This observation

raises the following question: are there advantages for

the probes to carry an application payload? Note that

acknowledgments cannot carry node-specific payloads

as this would violate the requirement posited in Sec-

tion 2 that acknowledgments be identical . We attempt

to answer this question in two steps. First, we show

that carrying a payload does not compromise backcast’s

feasibility or performance. We then sketch one service

enabled by this extension.

To explore the first question we varied the probe’s

payload, from one byte up to its maximum size of 116

bytes for the CC2420 radio we use [11]. As expected

the time necessary for a complete backcast operation in-

creases linearly with the size of the probe. More im-

portantly, a backcast carrying the maximum payload re-

quires only ∼50% more time (31.27 msec) than one

with a one byte payload (20.77 msec). The reason is that

actual probe transmission corresponds to only a subset

of the total time the radio is active, the rest devoted to

turning the radio on and waiting for acknowledgments.

Since including application payloads generates only

moderate overhead, we explore the original question

through an extension to the primitive described in Sec-

tion 3.1. Specifically, we augment probes to include

the initiators’ local clock value. Then nodes that over-

hear these probes can use them to perform network-wide

3
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clock synchronization (e.g., through a distributed con-

sensus algorithm). However, since nodes keep their ra-

dios mostly off to conserve energy, this mechanism will

only work if many probes are actually overheard (we

term such an event, an opportunistic rendezvous).

Fortunately, even if a node keeps its radio on for only

20 msec during a 20 second interval (i.e., a 0.1% duty

cycle), the birthday paradox works to our advantage, as

Figure 3 shows. Even with few neighbors, the probabil-

ity of a rendezvous is non-negligible. Furthermore, be-

cause nodes send frequent backcasts, the contact proba-

bility accumulates over time, resulting in numerous ren-

dezvous in the span of a few hours.

3.4 Robust Pollcast

Demirbas et al. recently proposed pollcast, a two-phase

primitive in which a node broadcasts a poll about the

existence of a node-level predicate P and then all nodes

for which P holds reply simultaneously [3]. The poller

detects one or more positive answers by reading its ra-

dio’s Clear Channel Assessment (CCA) signal. While

pollcast offers a novel approach for quickly calculat-

ing predicates, the proposed mechanism has some draw-

backs, as the paper acknowledges: simultaneous poll-

casts within a two-hop neighborhood would cause false

positives as would interference from other networks.

Backcast provides a more robust primitive for imple-

menting pollcast, which in turn can be used to imple-

ment the applications outlined in [3]. To leverage the

backcast primitive, pollcast might be modified to first

transmit the predicate, then transmit the poll, and finally

listen for an acknowledgment. The predicate would be

sent to the broadcast address but it would also include

an ephemeral identifier chosen by the initiator. Upon

receiving the predicate, and evaluating it as true, a re-

sponder would enable acknowledgments and temporar-

ily change its hardware address to match the ephemeral

identifier in the probe packet. Then, a backcast probe

sent to the ephemeral identifier would trigger a response

from all the nodes for which the predicate was true. The

CC2420 radio supports just two hardware addresses –

a 16-bit one and a 64-bit one – allowing just one or

two concurrent pollcasts. Future radios could perform

address decoding in parallel over dozens of addresses,

perhaps using a content addressable memory.

4 EVALUATION

This section provides empirical evidence that backcast

works with one commodity radio. These observations

are based on experiments with very controlled parame-

ters (Section 4.2), to larger, more realistic environments

using a sensor network testbed (Section 4.3).
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Figure 4: Experimental setup for the controlled tests. An initiator

is connected via a 30-inch, 50 Ω RF cable and a 30 dB attenuator

to the common port of an 8-way RF splitter. The other splitter ports

are connected via 6-inch, 50 Ω RF cables and 40 dB attenuators to

responders. A Faraday cage around the initiator limits over-the-air RF

leakage.

4.1 Methodology

We implemented backcast in the TinyOS embedded op-

erating system [5] and our experiments are based on the

widely-used Telos mote [9] that includes the Texas In-

struments CC2420, an IEEE 802.15.4 radio [11]. The

802.15.4 protocol and the CC2420 radio are ideal for

demonstrating backcast because they provide the needed

protocol and hardware support.

The 802.15.4 MAC defines a frame control field that

includes an acknowledge request flag. If a receiver is

configured for automatic acknowledgments, then an ac-

knowledgment frame is transmitted after twelve sym-

bol periods (192 µsec) for all incoming frames that

meet three conditions: they (i) have the acknowledge

request flag set, (ii) are accepted by the radio’s address

recognition hardware, and (iii) contain a valid CRC.

Acknowledgments are transmitted without performing

clear channel assessment and have the following fields:

preamble, start-of-frame delimiter, length, frame con-

trol, sequence number, and frame check sequence. No-

tably absent from this list is a source address, ensuring

that all ACKs for a given sequence number are identical.

The experiments that follow show how different

responder configurations affect the acknowledgments’

signal strength and quality. Signal strength is measured

over the first eight symbols and reported as the received

signal strength indicator (RSSI) in dBm. Signal quality

(LQI) is also measured by the radio over the first eight

symbols and is reported as a 7-bit unsigned value that

can be viewed as the average correlation value or chip

error rate.

4.2 Performance in a Controlled Setting

We first explore how the RSSI and LQI of acknowledg-

ment frames are affected as the number of responders

increase in a controlled setting. Figure 4 presents the

setup for this experiment. Eight nodes are sequentially

turned on so that the number of responders monotoni-
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Figure 5: Results of the controlled experiments. The received signal

strength (RSSI), link quality indicator (LQI), and acknowledgment re-

ception rate (ARR) are shown for each trial.

cally increases from one to eight. In each of the eight

trials, the initiator transmits 100 packets to the hard-

ware broadcast address, at 125 msec intervals, and logs

the RSSI and LQI values of the resulting acknowledg-

ments. The results are shown in Figure 5 and indicate

that median RSSI values increase, median LQI values

stay nearly constant, both values show greater variance,

and few acknowledgments are lost. Section 5 discusses

these results in detail.

4.3 Performance in a More Realistic Setting

Next, we explore how backcast performs in a more

realistic university testbed setting. The testbed is

located in an office building and contains 47 Te-

los motes. For this experiment however, we used

only 12 nodes approximately situated at the same dis-

tance from the initiator. These experiments com-

pare the performance of hardware-generated acknowl-

edgments (HACKs), software-generated acknowledg-

ments (SACKs), and HACKs with randomized pream-

ble lengths of between 3 and 16 bytes (VP-HACKs) that

start at the same time but may end at different times.

HACKs are automatically generated by the radio, while

SACKs require the host processor to intervene, intro-

ducing considerable delay and jitter. We introduce VP-

HACKs to explore how acknowledgments with smaller

delay variations than SACKs interfere at the initiator.

Note that while SACKs have non-uniform delays due to

software processing, the VP-HACKs are all delayed by

an integer multiple of the symbol time (composed of 32

chips) and the symbols themselves are orthogonal codes.

In each experiment, 500 packets are transmitted at

125 msec intervals. This procedure generates a gradual
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Figure 6: Backcast in a realistic environment, using hardware and

software acknowledgments. The data are shown as a two-dimensional

histogram; darker areas indicate a higher density of LQI samples. The

lower line shows the average acknowledgment reception rate (ARR).

increase in the number of colliding ACK frames. The

LQI and acknowledgment reception rates are shown in

Figure 6. The results show that HACK and SACK LQI

values exhibit higher variance and volatility as respon-

ders increase. Both HACKs with random preambles and

SACKs exhibit quickly decreasing LQI and ARR val-

ues, while HACKs incur practically no loss. Section 5

discusses these results in detail.

5 DISCUSSION

The results from Sections 4.2 and 4.3 suggest some im-

portant relationships between signal strength and quality

of acknowledgments, number of responders, and delay

variation. Further analysis, described below, supports

our hypothesis that the capture effect alone cannot ex-

plain the surprisingly robust performance of backcast.

First, as the number of colliding acknowledgments

increases, so does the median RSSI value. This trend

is not surprising since for every doubling of nodes, an

additional 3 dB of power is injected into the channel

(assuming nodes transmit at nearly equal power levels

and are equally distanced from the initiator). What is

slightly more surprising is that RSSI variance is substan-

tial and spans a range of 10-20 dB, which is both below

and above the single node case, and that the distribu-

tion of values in the two-node case has many outliers.
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These results suggest that elements of both constructive

and destructive interference of the carrier signal may

be at play. When three or more acknowledgments col-

lide, both the outliers and RSSI variance decrease, sug-

gesting that the statistical superposition of an increasing

number of signals diminishes destructive interference,

possibly due to the central limit theorem.

Second, the median LQI value is largely independent

of the number of nodes in the controlled setting (ex-

cept for the two node case) and it shows a slight de-

crease in the more realistic setting (computed, but not

shown). Since LQI is inversely correlated with chip er-

ror rate, the data show that most acknowledgments are

decoded with relatively few chip errors, even when a

dozen acknowledgments collide. The data suggest that

acknowledgment collisions are rarely destructive and in

most cases not particularly corrupting either. LQI values

show a lower median value for two responders than they

do for either one or more than two responders, suggest-

ing once again that elements of both constructive and de-

structive interference of the carrier signal may be at play.

The RSSI distributions are largely symmetric with few

outliers but the LQI distributions are left-tailed. This

observation suggests that although collisions rarely im-

prove the chip error rate, they can make it worse.

Finally, the data show that hardware acknowledg-

ments exhibit negligible loss rates with no fewer than

twelve concurrent packets, while software acknowledg-

ments approach very high loss rates with just six or

seven concurrent acknowledgments, as well as a sub-

stantial decline in link quality with just three or four ac-

knowledgments. In between these two extremes are the

variable-length preamble HACKs (VP-HACKs). The

two distinctions between SACKs and VP-HACKs are in

timing and composition. First, SACKs are delayed by

multiples of the CPU clock cycle since a SACK requires

software processing, but a VP-HACKs are delayed by

an integer multiple of the symbol time. Since the sym-

bols are chosen from an orthogonal set, this may explain

the better performance of VP-HACKs compared with

SACKs, despite the fact that VP-HACKs collide more

frequently and are not even identical. Since these three

types of acknowledgments differ in the delay and jitter

of their transmissions, we argue the capture effect alone

cannot explain the surprisingly robust performance of

HACK-based backcasts.

6 SUMMARY

This paper shows that a standards-based commodity ra-

dio can correctly decode the superposition of up to a

dozen identical acknowledgment frames. This observa-

tion suggests that an efficient and robust acknowledged

anycast service that does not suffer from ACK implo-

sions may be feasible. The ability to transmit a mul-

ticast or broadcast packet and receive an acknowledg-

ment in constant time independent of the number of re-

sponding nodes, an exchange we call backcast, enables

or improves a range of useful communication services.
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ABSTRACT
Message in Message (MIM) is an exciting development at the
physical layer of IEEE 802.11. Two transmissions that other-
wise conflict with each other, may be made concurrent with
MIM. However, the benefits from MIM are not immediate.
Higher layer protocols need to be explicitly designed to en-
able its inherent concurrency. This paper investigates the op-
portunities and challenges with MIM, and demonstrates a link
layer framework to harness its potential. We believe that our
framework can accommodate emerging physical layer capa-
bilities, such as successive interference cancellation (SIC).

1. INTRODUCTION
Physical layer research continues to develop new tech-
nologies to better cope with wireless interference. One
exciting development in the recent past is Message in
Message (MIM). Briefly, MIM allows a receiver to disen-
gage from an ongoing signal reception, and engage onto
a new, stronger signal. What could have been a collision
at the receiver, may now result in a successful commu-
nication. To better understand MIM, we compare it with
the traditional notion of collision and physical layer cap-
ture. We refer to Figure 1 to describe this contrast. We
assume throughout the paper that the signal of interest
(SoI) is sufficiently stronger than the interference1.

Collision was widely interpreted as follows: An SoI,
however strong, cannot be successfully received if the re-
ceiver is already engaged in receiving a different (inter-
fering) signal. Most simulators adopt this approach, pro-
nouncing both the frames corrupt [1,2]. Figure 1(c) and
(d) illustrate these cases. Physical Layer Capture was
later understood through the systematic work in [3, 4].
Authors showed that capture allows a receiver to decode
an SoI in the presence of interference, provided the start
of both the frames are within a preamble time window.
While valuable in principle, the gains from capture are
limited because the 802.11 preamble persists for a short
time window (20 µs in 802.11a/g). If the SoI arrived 20
µs or later, both frames will still be corrupt (Figure 1(d)).

1We also assume that the interference is strong enough that, in
the absence of the SoI, it can be decoded by the receiver.

Message in Message (MIM) is empowering because it
enables a receiver to decode an SoI, even if the SoI ar-
rives after the receiver has already locked on to the in-
terference [5]. Moreover, if the SoI arrives earlier than
the interference, MIM allows reception at a lower SINR
in comparison to a non-MIM receiver. Figures 1 (a), (b)
and (d) identify these benefits over capture.

Two main ideas underpin the feasibility of MIM:
(i) An MIM receiver, even while locked onto the inter-
ference, simultaneously searches for a new (stronger)
preamble. If a stronger preamble is detected, the receiver
unlocks from the ongoing reception, and re-locks on to this
new one. Of course, re-locking requires a higher SINR.

(ii) MIM takes advantage of the characteristics of inter-
ference signals. A strong decodable interference is bet-
ter than a weak non-decodable interference, because the
ability to decode the interference enables the ability to sup-
press it as well. As a result, an MIM receiver that is locked
onto the interference is better equipped to suppress it,
and re-lock onto the later-arriving SoI. Exploiting the
same idea, if the receiver has locked onto the SoI first,
and a weaker interference arrives later, the receiver is
able to better “tolerate this distraction”. As a result, the
SoI can be received at a lower SINR.

Link Layer Opportunity
Unless guided by link layer protocols, the intuitive ben-
efits from MIM may not translate into throughput im-
provements. We argue this using the example in Fig-
ure 2. When using MIM receivers, observe that the two
links can be made concurrent only if AP1→R1 starts be-
fore AP2→R2. Briefly, since R2 satisfies a higher SINR of
20dB, it can afford to decode its SoI even in the presence
of interference from AP1. However, since R1 satisfies a
lower SINR, starting earlier helps in locking onto AP1’s
signal in the clear. Had the order of transmission been
reversed, AP1→R1 transmission would experience a col-
lision. As a generalization of this example, MIM-aware
scheduling protocols need to initiate weaker links first,
and stronger links later. In a larger network, choosing the
appropriate set of links from within a collision domain,

1
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Figure 1: Evolving notion of successful reception. SINR values are approximate, and vary across hardware.

and determining the order of optimal transmission is a
non-trivial research problem. IEEE 802.11 or other MAC
protocols that are unaware of MIM [6] do not ensure
such orderings, failing to fully exploit MIM-capable re-
ceivers. Perhaps more importantly, graph coloring based
scheduling approaches may also be inapplicable. This is
because graph coloring approaches assume symmetric
conflicts between links. Link conflicts are asymmetric un-
der MIM (i.e., depend on relative order), and may not be
easily expressed through simple abstractions.

Figure 2: AP1→R1 must start before AP2→R2 to en-
sure concurrency. In the reverse order, R1 cannot
lock onto AP1’s signal because of AP2’s interference.

In response to this rich research problem, this paper pro-
poses an MIM-aware link layer solution that reorders
transmissions to extract performance improvements. Our
system is named Shuffle in view of its ability to shuffle
the order of transmissions. Our main contributions are:

(1) Validation of MIM through experiments on a small
testbed. We use MIM-enabled IEEE 802.11 compati-
ble Atheros 5213 chipsets, running MadWiFi drivers on
Soekris hardware. We show that order of transmission
matters while decoding packets.

(2) Analysis of optimal performance improvements
with MIM. We show that MIM-aware scheduling is NP-
hard, derive upper bounds on throughput using integer
programming in CPLEX, and design heuristics to attain
these bounds.

(3) Design of an MIM-aware scheduling framework,
Shuffle, for enterprise wireless LANs. Our approach

to reordering transmissions offers consistent throughput
improvements against both 802.11 and a centralized schedul-
ing protocol. The subsequent sections expand on each of
these contributions.

2. TESTBED MEASUREMENTS
We confirm the occurrence of MIM on a testbed of Soekris
devices equipped with Atheros 5213 chipsets using the
MADWiFi driver. Apart from corroborating the observa-
tions of [5] about MIM, we also show that due to MIM
the order of transmission matters for successful deliv-
ery of packets. The experiment consists of two transmit-
ters with a single receiver placed at various points in-
between. This subjects the receiver to varying SINRs. To
ensure continuous packet transmissions from the trans-
mitters, we modify the MADWiFi driver to disable car-
rier sensing, backoff, and the inter-frame spacings (EIFS
and SIFS). To time-stamp transmissions, a collocated re-
ceiver is placed at each transmitter. Using these time-
stamps, we are able to merge multiple traces to deter-
mine which packets overlap in time and the relative or-
der of overlap. We omit several implementation details,
especially those related to achieving µs-granularity time
synchronization among collocated receivers.

Figure 3 shows delivery ratio for different order of packet
arrivals, at different positions of the receiver. For all
these positions, the interference was strong, i.e., in the
absence of the SoI, the interfering packets were received
with high delivery ratio. Under these scenarios, observe
that when the receiver is very close to the transmitter
(positions 1, 2, and 3), it achieves a high delivery ratio
independent of the order of reception. This is a result of
achieving a large enough SINR, such that both SoI-first
(SF) and SoI-last (SL) cases are successful. However,
when the receiver moves away from the transmitter (po-
sitions 4 and 5), the SINR is only sufficient for the SF
case, but not the SL case. Hence, only 4% of the late-
arriving packets get received, as opposed to 68% of the
early-arriving packets. This is a clear validation of MIM,
and can be translated into throughput gains by deliber-
ately regulating the start of packets.

2
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Figure 3: Testbed validates MIM. Rx receives from Tx
(at 5 positions) in presence of interferer (Intf).

3. OPTIMALITY ANALYSIS
A testbed prototype validates the practicality of MIM,
and indicates potential for gains in a large scale network.
The natural question to ask is, what is the maximum gain
available from MIM? Towards this, we perform an opti-
mality analysis of MIM-capable networks. In the interest
of space, we present only the main results.

Given a network,G = (V,E), an MIM-enabled link schedul-
ing algorithm needs to choose a suitable subset of links,
l ∈ E, and specify their order of activation, Ol. The links
and their order must be chosen such that the network
concurrency (or network throughput) is maximized. We
have shown that Optimal MIM-aware scheduling is NP-
hard. The proof is derived through a reduction of the
Independent Set problem, known to be NP-complete.

We developed an Integer Program (IP) to characterize
the upper bounds on throughput for practical MIM-capable
network topologies. The bounds are compared with an
optimal MIM-incapable scheduling scheme (also NP com-
plete). We omit the IP formulation, and only include the
key results here. Figure 4 presents graphs generated us-
ing the CPLEX optimizer. Evident from the graphs, the
ideal benefits from MIM can be high, especially for net-
works of realistic size.

4. SHUFFLE: AN MIM-AWARE LINK LAYER
We now propose Shuffle, a link layer solution that ex-
ploits MIM capabilities by carefully reordering transmis-
sions. Shuffle targets enterprise WLAN (EWLAN) en-
vironments, such as universities, airports, and corpo-
rate campuses [7,8]. In EWLANs, multiple access points
(APs) are connected to a central controller through a
high speed wired backbone (Figures 2 and 6). The con-
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Figure 4: MIM performance bounds using CPLEX.

troller, besides acting as the gateway for Internet traffic,
coordinates the operations of APs. The (thin) APs follow
the controller’s instructions for control and data packet
communication.

4.1 Protocol Architecture
Shuffle executes three main operations as follows: (1)
Pair-wise interference relationships between links are char-
acterized through a measurement-based procedure that
we call rehearsal. (2) Utilizing the interference map, an
MIM-aware scheduler (hosted at the EWLAN controller)
computes a set of concurrent links, and their relative
order of transmission. (3) A transmission manager co-
ordinates the APs to execute the ordered schedule, and
handles failures due to time-varying channel conditions.
The rest of this section presents the details of these indi-
vidual operations.

 Interference 
 Relations

Rehearsal 

Scheduler 
     MIM Constraints
  

Ordered 
Transmissions 

Failure/Success

Packet Queue

Figure 5: Architecture of Shuffle

4.1.1 Rehearsal
Scheduling algorithms require the knowledge of interfer-
ence relationships between links. We propose a measurement-
based approach to obtain this relationship. Specifically,
the EWLAN controller coordinates the APs and clients to
transmit probe packets in a systematic manner. Other
clients and APs sniff the RSSI values for each transmis-
sion, and feed them back to the controller. The timing of
transmissions are carefully planned to ensure clear mea-
surements. Once all the link RSSI values are accumu-
lated, the controller merges them into an interference
map. For the merging operation, we assume that in-
terference is linearly additive [9, 10]. Hence, once the
rehearsal is over, the approximate SINR of any transmis-
sion, in the presence of other interfering transmissions,
can be computed. Of course, these values change due
to the time-varying nature of the wireless channel and
client mobility. We address this later in Section 4.1.4.
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4.1.2 Packet Scheduling
Given the interference map of the network, the job of the
MIM scheduler is to select an appropriate batch of pack-
ets from the queue, and prescribe their optimal order of
transmission. Unfortunately, graph coloring algorithms
on conflict graphs are not applicable in the case of MIM.
This is because graph coloring assumes that conflicts be-
tween links are symmetric, whereas, due to the order-
ing constraints in MIM, link conflicts are actually asym-
metric. This warrants new MIM-aware scheduling algo-
rithms, that unsurprisingly, prove to be NP-hard. There-
fore Shuffle employs a heuristic called Least-Conflict
Greedy. In Least-Conflict Greedy, each packet in the
queue is checked to identify its asymmetric conflicts with
all other packets in the queue. Each packet is assigned a
score based on such conflicts (a higher score if the packet
must start first). Then, the scheduler runs a greedy or-
dering algorithm based on the scores of packets. The in-
tuition is that packets with fewer conflicts (smaller score)
will be included early in the batch, potentially accommo-
dating more concurrent links. Fairness and starvation
issues are certainly important challenges.

4.1.3 Staggered Transmissions
The scheduler outputs a batch of packets, and their stag-
gered order of transmission. Each packet from this batch
is forwarded to the corresponding AP, along with its du-
ration of stagger. The APs begin transmission based on
their prescribed stagger, illustrated in Figure 6. Notice
that the transmissions are staggered in the order AP1→C13
before AP3→C32 before AP2→C21. Acknowledgments
to these transmissions may or may not be MIM-aware.
To support MIM-aware ACKs, the “stagger duration” of
ACKs can be piggybacked in the data packets. To reduce
clock synchronization issues, the stagger duration can
be specified as the time between the receipt of the data
and the start of the ACK transmission. Clients transmit
the ACKs after this specified wait. Transmission failures
are handled through scheduled retransmissions from the
controller. The failed packet’s priority is increased to en-
sure quicker scheduling.

Figure 6: Batch transmission with suitable stagger.

4.1.4 Handling Channel Fluctuations
A rehearsal produces a snapshot of the interference rela-
tionships in the network. However, the interference rela-

tions change over time, and scheduling algorithms must
remain abreast of such changes. For this, Shuffle em-
ploys continuous opportunistic rehearsals. The basic idea
with opportunistic rehearsal is that clients and APs con-
tinuously record RSSI values of ongoing transmissions,
and time-stamp them. These < RSSI, time > tuples
from the recent past are piggybacked in ACKs or other
packets that clients send to APs. The APs forward the
clients’ (and their own) tuples to the controller, which
in turn correlates them over time to refresh the interfer-
ence map. Scheduling decisions are based on this fre-
quently refreshed interference map, allowing Shuffle to
cope with fading and fluctuations. Our measurements
have shown that the conflict graph of the network re-
mains stable over hundreds of packets, giving us rea-
son to believe that opportunistic rehearsal will be fast
enough to cope with channel changes. Of course, this
needs to be confirmed with full scale implementation.

4.2 Limitations, Issues, and Extensions
While time synchronization is necessary to stagger pack-
ets, we believe that it need not be too tight. This is be-
cause we require packets to be staggered more than the
preamble of an earlier packet. Conservative staggering
(by adding a factor-of-safety more to the preamble du-
ration) can accommodate clock skews. The impact on
performance may only be marginal.

Shuffle needs to account for upload traffic. For this,
clients could express their intent by setting a flag on ACK
packets. On getting a flagged ACK, the controller could
schedule the client in the next batch of transmissions.
For clients that do not have an ACK to send, a short peri-
odic time window can be allocated for contention-based
(CSMA) transmissions.

Interferences in the 2.4GHz band, such as from microwaves,
cordless phones, or even from other devices near the pe-
riphery of the EWLAN, can affect the scheduled trans-
missions. Shuffle can account for them through rehearsal
if they persist for long durations. If they are transient,
Shuffle will rely on retransmissions to cope with them.

The discussion of Shuffle thus far assumes that all trans-
missions use a fixed rate and power. If APs are allowed to
transmit at varying rates and power levels, the controller
may be able to extract higher spatial reuse. The impact
of rate and power on MIM-aware schedules is part of our
future work.

5. EVALUATION
We evaluate Shuffle using the Qualnet simulator. MIM
capabilities were carefully modeled into the PHY and
MAC layer of the simulator. The EWLAN controller was
assumed to have a processing latency of 50µs, and the
wired backbone was assigned 1 Gbps data rate. We used
802.11a with transmission power 19dBm, two ray prop-
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Figure 7: (a) Throughput for university topologies. Shuffle outperforms NoMIM and 802.11, characterizing the
gains from MIM. (b) Higher AP density creates more opportunities for concurrency with MIM. (c) Percentage
throughput improvement with channel fading – Shuffle performs well under Rayleigh and Ricean fading.

agation model, transmission rate 12Mbps, and a PHY
layer preamble duration of 20µs. While we evaluated
latency, fairness, and some scheduling variants, we re-
port results for the primary metric of throughput.
We compare Shuffle with 802.11 and an MIM-incapable
scheme, called NoMIM. The gain from MIM alone is re-
flected in the difference between Shuffle and NoMIM.
The difference between NoMIM and 802.11 character-
izes the gains from centralized scheduling. Fig. 7(a)
presents throughput comparisons for topologies taken
from university buildings with different number of APs
on the same channel; each AP was associated to around
6 clients. As a special case, the second topology has APs
associated to 20 clients, resembling a classroom setting.
Shuffle consistently outperforms NoMIM and 802.11, con-
firming the potential of MIM-aware reordering. Evident
from the difference between NoMIM and 802.11, a fair
amount of benefit is also available through centralized
scheduling in EWLANs.

Impact of AP density
Next generation EWLANs may be envisioned to have very
high density of access points (perhaps each Ethernet-
capable desktop will act as an AP ). To understand Shuf-
fle’s scalability in high density environments, we ran-
domly generated topologies in an area of 100x150 m2.
We placed an increasing number of APs (ranging from 5
to 50) at uniformly random locations in this region. Each
AP is associated with 4 clients and the controller trans-
mits CBR traffic at 1000 pkts/sec to each of the clients.
Figure 7(b) illustrates that the throughput of shuffle in-
creases as the density of APs increase. This is because the
number of short (and hence high SINR) links increases
with greater number of APs. This enables more links sat-
isfying the SoI-Last threshold.

Impact of Fading
The above simulation results were obtained without chan-
nel fading, however, the impact of channel fading can be
severe, and the protocol needs to adapt to it over time.
To evaluate our opportunistic rehearsal mechanisms, we

simulate Ricean fading with varying K factors, and log-
normal shadowing. Figure 7(c) shows the percentage
improvement of Shuffle over 802.11 for different values
of K. For K = 0 (Rayleigh Fading), the fading is severe
and the improvements are less than at higher values of
K. Still, the improvements are considerable, indicating
Shuffle’s ability to cope with time-varying channels. The
improvements were verified to be a consequence of op-
portunistic rehearsals; when opportunistic rehearsal was
disabled, the performance degraded.

6. SHUFFLE WITH MIM VS SIC
Successive interference cancellation (SIC) is a physical layer
capability that can be exploited at the MAC layer to ex-
tract a weaker signal of interest (SoI) from a stronger
interference [11]. This development calls into question
the utility of Shuffle based on MIM. An obvious argu-
ment in favor of MIM is that it is feasible with current
Atheros chipset based receivers whereas SIC capable re-
ceivers may be available sometime in future. Neverthe-
less, we address this issue in this section by first contrast-
ing the abilities of MIM with SIC, and then arguing how
Shuffle augments SIC towards even higher performance.

Suppose two frames S and I overlap at a receiver and as-
sume S is the frame of interest. Conventionally S can be
decoded only if it is stronger than I and arrives before I at
the receiver. With MIM, S can be extracted regardless of
whether S arrives before or after I. However, even MIM
cannot help if S is weaker than I. Importantly, SIC em-
powers a receiver to decode I, subtract it from the com-
bined signal (S + I + Noise), and then decode S from
the residue (S + Noise). Of course, this description is
an over-simplification for the purpose of brevity. Now,
we observe that ordering of transmissions helps even
with SIC. Consider the two cases when I is moderately
stronger, or much stronger, than S. (1) If I is moderately
stronger than S, then initiate I before S. This helps in
decoding I first with a lower SINR threshold because its
preamble is sent in the clear (recall SoI-first case from
MIM). Once I is decoded well, it can be subtracted bet-
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ter, allowing better decoding of S. (2) However, if I is
much stronger than S, then initiate I after S (recall SoI-
last case from MIM). Since the receiver re-locks into I
anyway, this ordering helps decode S’s preamble in the
clear, which is later beneficial for separating S from the
residue. Thus, Shuffle’s approach of reordering and stag-
gering of transmissions facilitates concurrency in SIC as
well. Now, in the case where the receiver is interested in
both the frames, similar MIM-aware reordering can be
helpful. One needs to view both S and I as signals of in-
terest, say S1 and S2. Thereafter, the two signals need to
be initiated in the appropriate order, depending on their
relative strengths. Figure 8 shows this interplay of SIC
and MIM through a logical representation.

Figure 8: Ideal ordering of transmissions and corre-
sponding reception outcomes (assuming S1 and S2
are not too weak). (1) when S1 and S2 of compara-
ble strength, then both frames lost (black) (2) when
S1 moderately stronger than S2, and S1 started be-
fore S2, both received (dark gray) (3) when S1 much
stronger than S2, and S1 started after S2, both re-
ceived (light gray). The upper square is symmetric.

SIC, when coupled with power control, opens up inter-
esting possibilities for scheduling transmissions. Con-
sider a scenario where S1 and S2 have packets to trans-
mit to R1 and R2, respectively. Suppose the received sig-
nal strengths of S1 and S2 at R2 are comparable, i.e., fall
within the middle black band in Figure 8. If they trans-
mit concurrently, both will fail even with SIC because
neither of the signals can be decoded for subsequent sub-
traction. On the contrary, if the S2 to R2 signal is made
weaker by S2 transmitting at a lower power, i.e., mov-
ing from the middle black band of Figure 8 vertically to-
wards x-axis, both transmissions can be successful. This
is because both R1 and R2 can capture S1’s frame which
is relatively stronger, and R2 can then cancel S1’s frame
to extract S2’s frame. The benefit of SIC is of course con-
tingent on the signal strength values and in some cases
may result in a lower rate for S2→R2.

An SIC-aware Shuffle system will also employ rehearsals
and stagger transmissions as in Fig. 5. The only change
is the input to the scheduler. Instead of MIM constraints,
SIC will have to be satisfied while scheduling the batch
of queued packets. SIC constraints permit higher spa-
tial reuse than MIM constraints as they allow a weaker
reception to be concurrent with a stronger interfering
transmission. We plan to build and evaluate this order-
sensitive link layer to exploit both MIM and SIC.

7. CONCLUSION
Physical layer capabilities like MIM and SIC are capable
of better coping with interference. Although some bene-
fits may be automatically available, significant improve-
ments can be achieved if the link layer explicitly exploits
these capabilities. This paper investigates link layer op-
portunities and challenges towards harnessing these ca-
pabilities. We present an MIM-aware framework named
Shuffle that reorders transmissions to enable concurrent
communications. Theoretical and simulation studies show
that building MIM-aware networks are worthwhile; our
small-scale prototype validates its practicality. Based on
these results, we are implementing Shuffle with the aim
of providing a fully functional system solution.
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Abstract –We consider the task of automatically eval-
uating protocol gullibility, that is, the ability of some of
the participants to subvert the protocol without the knowl-
edge of the others. We explain how this problem can be
formalized as a game between honest and manipulative
participants. We identify the challenges underlying this
problem and outline several techniques to address them.
Finally, we describe the design of a preliminary prototype
for checking protocol gullibility and show that it can un-
cover vulnerabilities in the ECN protocol.

1. INTRODUCTION
Modern communication protocols are regularly used

among entities that should not trust each other to faith-
fully follow the protocol. Sometimes trust is unwarranted
because a participant may not know the identity of the
other entities. Even with known identities, there is still
the possibility that others have been hijacked by malicious
agents. Further, an entity can inadvertently violate the
protocol due to bugs in the implementation.

Whatever the cause, protocol violations can break im-
portant protocol invariants, leading to a variety of attacks.
For example, Savage et al. show that a TCP receiver can
fool the sender into sending faster than the intended con-
gestion controlled rate [19]. In fact, they point out three
different ways to accomplish this task. Spring et al. show
that an ECN (Explicit Congestion Notification) receiver
can fool the sender into ignoring congestion by simply
flipping a bit [21], undermining the central purpose of the
protocol. Researchers have reported similar kinds of vul-
nerabilities in peer-to-peer protocols, multi-hop wireless
networks, and routing protocols as well [4, 14, 1].

Thus, it is strongly desirable that communication pro-
tocols be robust against accidental or intentional manipu-
lation by participants. We say that a protocol isgullible
if a subset of the participants can violate desirable prop-
erties of the protocol by disobeying the protocol in some
fashion. Today, protocol gullibility is determined through
manual inspection; for example, all vulnerabilities above
were discovered manually. While significant progress has
been made recently in identifying bugs in protocol imple-
mentations [7, 17, 11], bug-free honest participants may
still be fooled by manipulative participants, as the exam-
ples above illustrate.

In this paper, we pose the problem of automatically
evaluating a protocol’s gullibility. To our knowledge, prior

work has either detected gullibility manually or has auto-
matically checked for specific vulnerabilities in security
protocol specifications [13, 15, 20, 18, 5]. We define the
general problem of protocol gullibility detection, discuss
the challenges involved, and propose techniques that can
help to address these challenges. Finally, we report on
the design of a preliminary prototype gullibility checker
along with some initial results on a very simple protocol.

We formalize the problem of automatic gullibility de-
tection in Section 3 as a game between an angelic compo-
nent that consists of honest players and a demonic com-
ponent that consists of manipulative players. The angelic
component follows the protocol, while the demonic com-
ponent can take any action, including sending or not send-
ing any particular packet. A protocol is considered gullible
if there exists a strategy for the demonic component such
that a desirable property of the protocol is violated.

Automatically determining protocol gullibility is chal-
lenging. The key challenge is the enormity of demonic
strategy space. At any step, any particular bit pattern can
be sent, and complicated strategies may involve a long se-
quence of particular packets. A second difficulty is the
need to search the space of network conditions, because
some strategies succeed only under certain network con-
ditions. Finally, even determining when a strategy has
succeeded may be difficult, requiring comparison with a
reference run where all participants are honest. Section 4
describes these challenges in detail and proposes several
techniques to address them.

To begin exploring the problem and our approach, we
have developed a preliminary gullibility checker that in-
corporates a subset of the techniques we propose. We
present initial results from using our checker to analyze
an implementation of the ECN protocol. The checker can
successfully discover the attack that was previously man-
ually discovered [21] as well as some variations on this
attack. Our results for ECN, a very simple protocol, are
encouraging and so we are excited to continue exploring
our approach on more complex protocols.

2. EXAMPLE MANIPULATIONS
We describe below some example vulnerabilities found

in existing protocols, to provide insight into the kinds of
manipulations that we are interested in uncovering.
ACK division in TCP [19]: TCP increases its conges-
tion window in units of entire packets whenever a packet
that acknowledges previously unacknowledged bytes ar-
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rives. A manipulative receiver can speed transfers by ac-
knowledging individual bytes rather than entire packets
(as an honest receiver would).
Duplicate ACKing in TCP [19]: A TCP sender sends
more data in response to any acknowledgment, since the
acknowledgment signals that some data left the network.
A manipulative receiver can speed transfers by generating
multiple, duplicate acknowledgments for the last received
sequence number.
Optimistic ACKing in TCP [19]: TCP assumes that
the time between a data segment being sent and an ac-
knowledgment being received is a round trip time, and its
congestion window increases as a function of that time.
A manipulative receiver can speed transfers by optimisti-
cally sending acknowledgments for packet sequence num-
bers that have not arrived yet.
Hiding congestion in ECN [21]: In the ECN proto-
col, routers set a bit in the header to signal congestion.
The receivers then reflect this bit when sending packets to
the sender, at which point the senders reduce their trans-
fer rate. A manipulative receiver can speed transfers by
setting the congestion bit to zero instead of reflecting it.
Dropping packets in multi-hop wireless networks [14]:
Multi-hop wireless networks enable connectivity by hav-
ing nodes relay for one another. Manipulative nodes can
simply drop all packets that they are asked to relay while
reaping the benefits by having others relay for them.
Lying about connectivity in routing protocols [1]: Rout-
ing protocols such as OSPF and BGP rely on nodes accu-
rately reporting their connectivity, i.e., who they connect
to and the connection cost. Manipulative nodes can sig-
nificantly distort routing paths by lying.
Attacks in DHTs [4]: Castroet al. present a variety of
ways in which a manipulative node can hurt the overlay.
The set of possible manipulations is large. It includes how
the node identifiers are generated, how routing messages
are propagated, and how messages are forwarded.

All the vulnerabilities above were discovered manually.
We want to automate the search for these kinds of vulner-
abilities. Researchers have proposed fixes to these vulner-
abilities. Automated tools can also help determine if the
fixes are themselves robust.

3. PROBLEM STATEMENT

Consider a communication protocol that two or more
parties use in order to achieve a common goal. The honest
participants execute the protocol correctly. The manipu-
lators have complete freedom in what they choose to send
(or not send) and when. Multiple manipulators may also
collude. We seek to determine if the protocol is gullible,
that is, the manipulators can prevent the honest partici-
pants from achieving the goals of the protocol.

We formalize this problem as a two-player game be-
tweenA and D, the angelic and demoniccomponents.

A consists of honest players. These players communi-
cate with each other and withD by exchanging messages.
D consists of manipulative players, possibly colluding
through out-of-band mechanisms. Finally, assume that
there is a propertyP over the state ofA andD that repre-
sents an invariant that the protocol should never violate.

The game proceeds by alternating moves of the two
components. On its turn,A chooses one of the possible
actions allowed by the protocol, such as a packet receive
or a timer event. The choices available toA represent the
nondeterminism that is outsideD’s control. In particular,
actions of the network, e.g., packet losses, are considered
moves ofA. D responds by consulting its attack strategy.
Its move involves either sending an arbitrary packet toA

or choosing not to respond. The protocol under study is
gullible if there exists a strategy forD with which D can
eventually drive the system to a state that violatesP .

Our problem formulation has two notable features. First,
we distinguish between angelic and demonic nondeter-
minism, because different methods are required to sys-
tematically search over them. Given a state, the angelic
component usually has a handful of moves that obey the
rules of the protocol. The demonic component can, how-
ever, send an arbitrary packet, representing an astronom-
ically huge search space at each step. Moreover, the de-
monic component might use a stateful strategy, whereby
the choices made at one step depend on the preceding
choices. In contrast to our formulation, the current work
on model checking system implementations [7, 17, 11]
has either no demonic component or a very restricted one.

Second, the propertyP that identifies when manipula-
tion has happened depends on the protocol under test. As
a simple example,P can state that the connection queue
should not be able to remain full forever, which represents
a denial-of-service attack. A more complicated example
property would limit the throughput that can be obtained
by the demonic component. Checking for violations of
this kind of property is important, since many discovered
manipulations concern resource allocation attacks [19, 21,
14, 4]. For such cases, we propose thatP be specified
in terms of a comparison to a “reference” behavior that
occurs if the demonic component were to honestly fol-
low the protocol. For example, congestion control pro-
tocols could require that no receiver gets more data than
what it would get by following the protocol; DHTs and
wireless relaying protocols could require that the ratio of
packets relayed and generated not change; and routing
protocols could require that forwarding table pointers not
change. More generally, we could specify that important
state variables for a protocol not change.

4. CHALLENGES AND TECHNIQUES
We now describe the challenges in building a practical

tool to test protocol gullibility and propose techniques to
address these challenges.
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4.1 Challenge: Practical Strategy Search
The primary challenge that we face is that the space

of possible demonic strategies is huge. There are212000

possibilities for a 1500-byte packet that the manipulator
can send. Further, that is just the size of the search space
for a single message; complicated attacks may depend on
sending a particular sequence of packets.

We propose a variety of techniques to reduce the search
space size. These techniques leverage the structure in-
herent in network protocols as well as some properties
that are common across large classes of protocols. While
these search-space reduction techniques can potentially
cause our tool to miss some attacks, we believe that many
vulnerabilities of interest, including most of the ones de-
scribed in Section 2, can still be found. Systematically
discovering such vulnerabilities would be a significant im-
provement in the current state of art and is a first step to-
wards automatically discovering other kinds of attacks.
• Consider only the header part of the packet The
control flow of most protocols is based on the contents of
the header and not on the payload. Hence, instead of con-
sidering the entire packet, we focus on headers. Within a
packet, what is header versus payload depends on the pro-
tocol being tested. For instance, for IP everything other
than the IP header constitutes the payload even though
that payload may contain TCP headers. This technique
enormously reduces the search space. If the header size
is 40 bytes, for 1500-bytes packets, the single-step search
space goes from212000 to 2320.
• Consider only syntactically correct packetsProtocol
packets are not random bit strings but have specific for-
mats. For instance, the checksum field occurs in a cer-
tain location and is computed over specific bits. Hon-
est participants typically discard incoming packets that
are not in the requisite format. Accordingly, rather than
searching the space of all bit patterns, we focus on pack-
ets that comply with that format. The packet format can
be provided by the user or automatically inferred [6] from
traces. While there may be some attacks that involve non-
compliant packets, these are very likely to be due to im-
plementation bugs, such as buffer overflows. We are not
interested in finding such bugs; other methods, such as
fuzzing [16, 8], are more apt for finding them.
• Exploit header-field independence To further reduce
the search space, we assume that most header fields are
independent of one another with respect to possible vul-
nerabilities. That is, most vulnerabilities can be discov-
ered through a systematic search within the possible val-
ues for groups of fields, keeping the values of other fields
unchanged. For instance, for TCP one might assume that
the sequence number and acknowledgment number fields
are independent, allowing us to independently search the
fields for possible attacks. Since each field is 32 bits,
searching them together would yield a space of264 possi-

ble values, which searching them independently yields a
much smaller space of2 × 232 = 233 values. We rely on
the user to provide information about which fields should
be considered independent of one another.

• Consider only limited-history strategies We expect
that many interesting attacks require the manipulator to
take only a small number of basic steps. The attack is then
carried out by repeated application of this small sequence
of steps. For instance, the ECN vulnerability mentioned
earlier is a single-step strategy: the manipulator needs to
send a specific bit pattern in order to get more bandwidth.
Therefore, our tool can bound the length of strategies that
it will consider to a small constant.

• Leverage program analysis techniques As men-
tioned above, we consider only syntactically correct pack-
ets, since other packets are typically ignored. However,
many syntactically correct packets may also be ignored
by an honest participant. For instance, if IPv4 is the pro-
tocol being checked, packets with anything but the value
of 4 in the version field are ignored. As another example,
TCP senders ignore acknowledgments for sequence num-
bers below the last acknowledged sequence number. We
propose to identify the legal values of header fields using
program analysis of protocol source code; our search can
then ignore other values for these fields.

Program analysis can also help direct the strategy search
itself by identifying conditions under which an honest par-
ticipant’s state can change in ways that are beneficial to a
manipulator. For instance, program analysis of a TCP im-
plementation can determine values of header fields in a
received packet that cause the honest participant to send
more bytes. We intend to allow the tool user to provide a
set of variables in the honest participants’ state, and pro-
gram analysis will direct the search to strategies that cause
these variables’ values to change.

For both types of analyses above, we hope to leverage
recent work ondirected random testing[9], which com-
binessymbolic execution[12] with program testing.

4.2 Challenge: Variable network conditions

Some protocol vulnerabilities are exploitable only un-
der certain network conditions. For instance, the ECN
bit-flipping vulnerability comes to light only if the net-
work is congested and thus marks congestion bits in some
packets. If we simulate only uncongested paths, we will
not be able to uncover this ECN vulnerability.

Therefore, for each strategy considered during strategy
search, we must search the space of possible network path
behaviors. We make the simplifying assumption that the
paths between each pair of participants are independent
of one another. We can then separately characterize each
such path, for instance, by its loss rate and latency. The
behavior of each path defines a space of network condi-
tions, which our tool searches for each demonic strategy.
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Type Description Default strategies
Fixed Fields that should not be modified None

Checksum Fields that represent a checksum over certain bits in the header None
Enum Fields that take on specific bit patterns. E.g., Protocol field in IP header Pick a value deterministically; pick one at random

SeqNum Fields that represent sequence numbers Subtract or add a constant value; multiply or di-
vide by a constant value

Range Fields that take on a range of value. E.g., Addresses and portnumbers Pick a value deterministically; pick one at random
Id Fields that contain identifiers. E.g., IP identifier in IP header, or node

identifier in peer-to-peer protocols
Pick one at random

Other All other fields User-specified

Table 1: Fields types and default strategies in our system.

4.3 Challenge: Determining when a strategy has
been successful

As mentioned earlier, for complex properties, particu-
larly those related to resource allocation, a strategy’s suc-
cess cannot be determined simply by running the strategy;
instead we must compare against reference behavior when
all participants are honest. However, two individual runs
of the protocol cannot be meaningfully compared directly,
due to the nondeterminism in the angelic component (e.g.,
network conditions). For example, under a given network
condition of 20% loss rate, the behavior of TCP is not
unique but depends on which specific packets are lost.

Therefore, to compare a manipulated protocol against
reference behavior, we run each version of the protocol
multiple times under a given network condition, obtaining
a distribution for each over some set of metrics (e.g., num-
ber of messages sent in a given amount of time). We can
then use statistical tests (e.g., the Kolmogorov-Smirnov
test or Student’st-Tests) to determine if the two distribu-
tions are statistically different.

5. PROTOTYPE CHECKER
To study the feasibility of automatically checking pro-

tocols for gullibility, we are implementing a prototype
checker. Our current implementation uses all of the tech-
niques described above except for program analysis. Fur-
ther, rather than asking the user for information about field
independence, we simply assume that all fields are inde-
pendent of one another. Finally, we use network simula-
tion to explore angelic nondeterminism.

Our system works directly with protocol implementa-
tions written in the Mace language for distributed sys-
tems [10]. We create the manipulators as modifications
of an “honest” implementation of the protocol. At a high
level, the manipulator has three types of actions that cover
the space of possible strategies:i) drop packets that hon-
est players would have sent;ii) modify the contents of
packets that honest players would have sent; andiii) send
packets when honest players would not have sent a packet.

We have created a simple API for dropping and modi-
fying packets, along with a default implementation of the
API (a C++ class). Wherever the protocol source code
calls the function to send a packet, we insert a call into our
API’s modify or drop function, passing the packet to

be sent. Our function returns the modified packet and in-
dicates whether it should be dropped.

We have not yet implemented packet insertions at arbi-
trary times, the third action above. Our plan is to add a
timer to the protocol implementation. An arbitrary packet
can be sent when this timer fires.

The protocol tester provides three required inputs and
one optional input to our system:

1. Network configuration This includes the num-
ber of participants, and the fraction of participants that are
honest. If the protocol is asymmetric, such as TCP sender
vs. receiver, the tester also specifies which aspect to test.
This setup information is distinct from network path con-
ditions (e.g., loss rate) for which we automatically explore
the various possibilities. In the future we plan to automat-
ically generate and test a range of possible setups as well.

2. Variables of interest The tester specifies the prop-
erty to be tested indirectly by providing a set of variables
of interest within the protocol implementation. The intent
is that the tester is interested in ways in which a manipu-
lator can cause deviations in the values of these variables.
If the implementation does not already have the necessary
variables, we expect the testers to implement them. For
instance, while the current congestion window is an ex-
isting state variable in a TCP implementation, total traffic
sent may not be, but it can be easily implemented.

3. Protocol header format The format is specified in
terms of the header fields and their types. The types that
we currently use are listed in Table 1. This list is based
on an informal survey of several common protocols and
it may grow as we experiment with more protocols. For
some of the types, e.g.,EnumandRange, the format must
specify the possible values of their fields.

4. A packet modifier class The packet modifica-
tion operation produces a modified version of the input
packet. Each header field is modified independently, de-
pending on its type. The default modification strategies
are shown in Table 1. All default modification strategies
are memoryless: they do not depend on what was sent be-
fore. Users can optionally provide their own packet mod-
ifier class implementing our API, in order to specify their
own strategies for these and other field types.

Given these inputs, we use the simulation engine pro-
vided by the MACE framework [11] to evaluate protocols.
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Figure 1: Results of using our prototype to check the gullibility of the ECN protocol. Each graph corresponds to
a different cheating strategy by the receiver. Thex-axis indicates the fraction of packets on which the congestion
bit was set. They-axis is the number of timer events to deliver 300 packets to the receiver.

In each run of the simulator, we fix a particular set of net-
work path conditions as well as a particular modification
strategy for each header field. The cross product of net-
work path conditions and possible modification strategies
thereby forms the state space that our engine explores.

For each pair of a set of network conditions and a mod-
ification strategy, we simulate the protocol multiple times.
We also simulate multiple runs of a completely honest
version of the protocol for each possible set of network
conditions. If there are statistically significant differences
in the values of variables of interest between the honest
and manipulated runs for a given strategy and set of net-
work conditions, we deem the protocol to be gullible.

6. CASE STUDY: ECN
We now present results from using the preliminary ver-

sion of our tool to test the ECN protocol. We chose to
start with ECN because of its simplicity. Nonetheless, a
study of even this simple protocol reveals many relevant
insights and provides initial evidence for the feasibilityof
automatic gullibility checking.

We implemented a version of the ECN protocol in the
Mace framework. Its header has only one field, of type
Enum with 0 and 1 as the possible values. The field value
is initially 0, and it is set to 1 by the network to indicate
congestion. The sender starts by sending one packet to
the receiver. The receiver acknowledges each received
packet. The honest receiver’s acknowledgment reflects
the value of the congestion bit in the packet it received.
Dishonest receivers are free to do anything. In response to
receiving an acknowledgment that does not indicate con-
gestion, the receiver sends two new packets. If congestion
is indicated, the sender does not send any new data. In ad-
dition, the sender has a timer that fires periodically. If no
packet has been sent since the last firing, the sender sends
a new packet, to keep the information flow going.

We specify the network setup as having two nodes, one
sender and one receiver, and we tell our tool to investigate
manipulation by receivers. We also specify that protocol
behavior should be measured in terms of the number of
timer events. This measure indirectly captures the total

time needed to send a particular number of packets. Be-
cause we do not explicitly simulate time, we cannot di-
rectly measure throughput. Finally, we emulate different
network conditions by configuring different probabilities
of setting the congestion bit.

The graphs in Figure 1 show the protocol behavior as
a function of the network conditions. They show this be-
havior with both the honest receiver as well as with dif-
ferent cheating strategies. The set of cheating strategies
in this case involve setting the congestion bit to 0, 1, or
randomly. We conduct 200 trials for each combination of
receiver strategy and network conditions, with each trial
simulating the sending of 300 packets. We show all data
points thus obtained, to demonstrate the variance with net-
work conditions.

The figure shows how our tool can automatically deter-
mine which strategies work and quantify their impact. It
shows that a misbehaving receiver can speed transfers by
always setting the bit to zero and it can slow transfers by
always setting the bit to one. Further, the misbehaving re-
ceiver can speed transfers even by setting the congestion
bit randomly.

The graphs show that the impact of a cheating strat-
egy is visible only under certain network conditions. For
instance, the impact of setting the congestion bit to zero
does not show until 40% of the packets have the conges-
tion bit set and that of setting the bit randomly does not
show until 60% of the packets have the congestion bit set.
This behavior points to the importance of simulating dif-
ferent network conditions along with cheating strategies.
Without simulating different network conditions, a gulli-
bility checker might incorrectly infer that certain strate-
gies are unsuccessful.

7. RELATED WORK
We are directly inspired by the recent success [7, 17,

22, 11] of systematic search techniques, as implemented
by a model checker, in finding safety and liveness errors
in system implementations. This class of research focuses
on scaling to large systems and on nondeterminism arising
from the timing of various events in the system. The de-
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monic nondeterminism considered is fairly restricted and
is limited to the network dropping packets or a system re-
boot occurring at an arbitrary instant. A straightforward
extension of these techniques to include actions of an all-
powerful malicious attacker does not scale.

Another related class of prior research applies formal
verification techniques to validate abstract models of se-
curity protocols against malicious attacks [13, 15, 20, 18,
5]. Our work is most closely related to the use of model
checking [20, 5] to systematically enumerate the behavior
of the protocol in the presence of an attacker aiming to
acquire a secret only known to honest participants. The
attacker models considered are powerful and can gener-
ate arbitrary packets by combining parts of previously ex-
changed messages and publicly known encryption keys.
However, due to the inherent state-space explosion prob-
lem, the problem instances considered are small hand-
abstracted models of security protocols with very few mes-
sage exchanges. In contrast, our work targets larger general-
purpose network protocol implementations. We also check
more complex properties, in particular those that compare
the attacker against an honest version under the same net-
work conditions. The price for these generalizations is
that our approach is appropriate for finding attacks but not
for producing a formal proof of correctness.

Automated fuzzing techniques [16, 2], which subject
a system to random sequences of inputs, can find many
errors in systems, some of which can lead to malicious
attacks. As an extension, directed random testing [9, 3,
8] generates inputs based on symbolic execution of the
program. These techniques have been used to find imple-
mentation errors, particularly errors in validating inputs.
Our focus is on finding vulnerabilities in the protocol de-
sign itself. Therefore we restrict ourselves to well-formed
input packets. However, as mentioned earlier we are in-
terested in adapting fuzzing and testing techniques to our
setting, in order to reduce the search space.

8. CONCLUSIONS
We have proposed and defined the problem of auto-

matically checking protocols for gullibility, i.e., theirvul-
nerability to manipulation by some of the participants.
We identified the challenges in building a practical tool
for this task and proposed several techniques to address
them. We are currently developing a prototype checker
using these techniques. Early results from using our tool
to check the ECN protocol are promising, automatically
identifying vulnerabilities and the network conditions un-
der which they are exploitable. We are excited to improve
our tool and apply it to new classes of protocols.
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ABSTRACT

We argue that sensing and computation platforms that
leverage RFID technology can realize “smart-dust” ap-
plications that have eluded the sensor network commu-
nity. RFID sensor networks (RSNs), which consist of
RFID readers and RFID sensor nodes (WISPs), extend
RFID to include sensing and bring the advantages of
small, inexpensive and long-lived RFID tags to wireless
sensor networks. We describe sample applications suited
to the space between existing sensor networks and RFID.
We highlight the research challenges in realizing RSNs
such as the use of intermittent power and RFID proto-
cols suited to sensor queries.

1 INTRODUCTION

In the late 1990s, the vision of “smart-dust” was articu-
lated by the research community. This vision was pred-
icated on advances in microelectronics, wireless com-
munications, and microfabricated (MEMS) sensing that
were enabling computing platforms of rapidly diminish-
ing size. The early proponents imagined devices one cu-
bic millimeter in size with capabilities sufficient to power
themselves, sense the environment, perform computa-
tion, and communicate wirelessly [7]. Large-scale de-
ployments of such devices would enable a wide range
of applications such as dense environmental monitoring,
sensor rich home automation and smart environments,
and self-identification and context awareness for every-
day objects.

The past decade has seen significant effort and
progress towards the original motivating applications. In
particular, wireless sensor networks (WSNs) based on
“mote” sensing platforms have been applied to many
real-world problems. Remote monitoring applications
have sensed animal behavior and habitat, structural in-
tegrity of bridges, volcanic activity, and forest fire dan-
ger [5], to name only a few successes. These net-
works leveraged the relatively small form-factor (ap-
proximately 1” x 2”) of motes and their multihop wire-
less communication to provide dense sensing in difficult
environments. Due to their low power design and care-
ful networking protocols these sensor networks had life-
times measured in weeks or months, which was generally

sufficient for the applications.

Despite this success, WSNs have fallen short of the
original vision of smart-dust. They have not led to an
approximation of sensing embedded in the fabric of ev-
eryday life, where walls, clothes, products, and personal
items are all equipped with networked sensors. For this
manner of deployment, truly unobtrusive sensing devices
are necessary. The size and finite lifetime of motes make
them unsuitable for these applications.

We argue in this paper that Radio Frequency Identifi-
cation (RFID) technology has a number of key attributes
that make it attractive for smart-dust applications. Pas-
sive UHF RFID already allows inexpensive tags to be re-
motely powered and interrogated for identifiers and other
information at a range of more than 30 feet. The tags can
be small as they are powered by the RF signal transmitted
from a reader rather than an onboard battery; aside from
their paper thin antennas, RFID tags are approximately
one cubic millimeter in size. Moreover, their lifetime can
be measured in decades as they are reliable and have no
power source which can be exhausted. These advantages
have resulted in the widespread deployment of RFID for
industrial supply-chain applications such as tracking pal-
lets and individual items. However, RFID technology is
limited to only identifying and inventorying items in a
given space.

The RFID Sensor Networks (RSNs) we advocate in
this paper extend RFID beyond simple identification to
in-depth sensing. This combines the advantages of RFID
technology with those of wireless sensor networks. In
our previous work, we have demonstrated the techni-
cal feasibility of building small, battery-free devices that
use the RFID PHY and MAC layer to power themselves,
sense, compute, and communicate; we refer to these de-
vices as Wireless Identification and Sensing Platforms
(WISPs)[12, 13]. While other research efforts such as
[3] have combined RFID with sensing, to the best of our
knowledge, the Intel WISP is the only RFID sensor node
with computational capabilities and that operates in the
long range UHF band.

While the feasibility of WISPs has been established
by this earlier work, how to harness many such devices
to create RSNs is an open question. An RFID sensor net-
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Figure 1: Commercial UHF RFID tag, Accelerometer WISP, Telos
mote with batteries

work consists of multiple WISPs and one or more read-
ers. Consequently, realizing full-scale RSNs will require
development at both the WISP and the reader, as new
protocols and techniques must be developed unlike those
of either RFID or WSNs.

The focus of this paper is the applications that RSNs
enable and the systems challenges that must be overcome
for these to be realized. As the traditional RFID usage
model is very different from that of WSNs, RSNs face
substantial challenges when trying to integrate the two
technologies. For example, unlike WSNs, RSNs must
cope with intermittent power and unlike RFID must sup-
port sensor queries rather than simply identification.

2 FROM MOTES AND RFID TO RSNS

Two technologies have been widely used to realize real-
world monitoring applications: wireless sensor networks
via motes, and RFID via standard tags and readers. We
describe and contrast each technology and then present
their combination (Table 1) as RFID sensor networks
(RSNs). We use prior work on the WISP [12, 13] to
demonstrate the technical feasibility of this combina-
tion. Representative devices for the three technologies
are show in Figure 1.

2.1 Wireless Sensor Networks (Motes)

Currently, most WSN research is based on the Telos
mote [10], which is a battery powered computing plat-
form that uses an integrated 802.15.4 radio for commu-
nication. These motes are typically programmed to orga-
nize into ad-hoc networks [15] and transmit sensor data
across multiple hops to a collection point. To extend
network lifetime, motes duty cycle their CPU and radio
(e.g., with low-power listening [9]), waking up intermit-
tently to sense and communicate. With a duty cycle of
1%, motes can have a lifetime of up to three years before
the batteries are exhausted.

Using multihop communication, WSNs can sense over
great distances, which has made them idea for a wide
range of applications. However, the large size of the

mote and its finite lifetime makes it unsuitable for ap-
plications where sensing must be embedded in small ob-
jects, or in inaccessible locations where batteries cannot
be replaced.

2.2 RFID

While there are a number of different RFID specifica-
tions, that of greatest interest for sensing applications
is the EPCglobal Class-1 Generation-2 (C1G2) proto-
col [4], as it is designed for long-range operation. The
C1G2 standard defines communication between RFID
readers and passive tags in the 900 MHz Ultra-High Fre-
quency (UHF) band, and has a maximum range of ap-
proximately 30 feet. A reader transmits information to a
tag by modulating an RF signal, and the tag receives both
down-link information and the entirety of its operating
energy from this RF signal. For up-link communication,
the reader transmits a continuous RF wave (CW) and the
tag modulates the reflection coefficient of its antenna. By
detecting the variation in the reflected CW, the reader is
able to decode the tag response. This is referred to as
“backscattering,” and requires that a tag be within range
of a powered reader.

The MAC protocol for C1G2 systems is based on
Framed Slotted Aloha [11], where each frame has a num-
ber of slots and each tag will reply in one randomly se-
lected slot per frame. Before beginning a frame, a reader
can transmit aSelect command to reduce the number of
active tags; only tags with ID’s (or memory locations)
that match an included bit mask will respond in the sub-
sequent round. After a tag replies, the reader can choose
to singulate the tag, or communicate with it directly, and
read and write values to tag memory. These mechanisms
enable rapid tag identification and unicast read and write.

RFID tags are fixed function devices that typically use
a minimal, non-programmable state machine to report a
hard-coded ID when energized by a reader. As they are
powered by the reader, the device itself can be very small,
though the antenna requires additional area. As the an-
tenna is flexible and paper thin, their small size means
they can be affixed to virtually any object to be identified
However, RFID tags provide no general purpose comput-
ing or sensing capabilities.

2.3 RFID sensor networks (WISPs + readers)

We define RFID sensor networks (RSNs) to consist
of small, RFID-based sensing and computing devices
(WISPs), and RFID readers that are part of the infras-
tructure and provide operating power. RSNs bring the
advantages of RFID technology to wireless sensor net-
works. While we do not expect them to replace WSNs
for all applications, they do open up new application
spaces where small form-factor, long-lived, or inacces-
sible devices are paramount. Our hope is that they will

2

38



CPU Sensing Communication Range Power Lifetime Size (inches)
WSN (Mote) Yes Yes peer-to-peer Any battery < 3 yrs 3.0 x 1.3 x .82 (2.16in3)
RFID tag No No asymmetric 30 ft harvested indefinite 6.1 x 0.7 x .02 (.08in3)
RSN (WISP) Yes Yes asymmetric 10 ft harvested indefinite 5.5 x 0.5 x .10 (.60in3)

Table 1: Comparison of Technologies

elegantly solve many sensor network applications, e.g.,
home sensing and factory automation where installing or
carrying readers is feasible.

Prior work at Intel Research demonstrates that WISPs
can be built today. The most recent Intel WISP is a wire-
less, battery-free platform for sensing and computation
that is powered and read by a standards-compliant UHF
RFID reader at a range of up to 10 feet. It features a
wireless power supply, bidirectional UHF communica-
tion with backscatter uplink, and a fully programmable
ultra-low-power 16-bit flash microcontroller with analog
to digital converter. This WISP includes 32K of flash
program space, an accelerometer, temperature sensor,
and 8K serial flash. Small header pins expose micro-
controller ports for expansion daughter boards, external
sensors and peripherals.

The Intel WISP has been used to implement a variety
of demonstration applications that read data from a sin-
gle sensor unit. These include the first accelerometer to
be powered and read wirelessly in the UHF band, and
also the first UHF powered-and-read strain gage [17].
Even without its sensing capabilities, the Intel WISP can
be used as an open and programmable RFID tag: the
RC5 encryption algorithm was implemented on the In-
tel WISP [2]. We believe this is the first implementation
of a strong cryptographic algorithm on a UHF tag.

3 EXAMPLE APPLICATIONS

RFID sensor networks have broad applicability wherever
sensing, small form factor, embeddability, longevity, and
low maintenance are desired and fixed or mobile readers
are feasible. This section highlights applications within
this space and some of the key design considerations.

3.1 Blood

Blood transfusions save lives, replacing blood lost dur-
ing surgery, illness, or trauma. After donation, blood is
bagged and refrigerated between 1◦ and 6◦ C and has a
shelf life of about 35 to 42 days. Refrigerators used to
store blood are monitored for outages and temperature
fluctuations, and collection dates are recorded on blood
bags. However, the temperature of the bag itself is rarely
monitored with any regularity. This makes it difficult to
determine if a given bag was warmed to unsafe levels,
such as if it is near the front of the refrigerator and the
door is often opened. Additionally, it is difficult or im-

possible to gauge exposure during transport from a donor
to a bank, between banks, and ultimately to a patient.

WISPs with temperature sensors could be attached di-
rectly to individual blood bags and queried for their mea-
surements. Such sensors must be small (one could imag-
ine affixing sensors with something like a price tag gun),
and inexpensive to the point of being disposable.

To understand the challenges in building such an ap-
plication, an Intel WISP was attached to a container of
milk (a suitable and widely available approximation of
a bag of blood), and its temperature was monitored over
the course of 24 hours [16]. For this study, a storage
capacitor (roughly the size of a pea) was attached to the
WISP to log sensor data for up to a day when out of range
of a reader.

3.2 Brains

Research in neuroscience has explored using neural sen-
sors for controlling prosthetic limbs [14]. Sensors placed
outside the skull can capture neural activity, but the sig-
nals are too coarse-grained and noisy to be effective.
With surgery, sensors can be placed directly on the brain,
resulting in much higher resolution and finer control of
the limb. Using conventional technologies (e.g., motes)
presents difficulties with respect to power because batter-
ies need to be replaced via invasive surgical procedures,
as is the case with pacemakers.

An RFID sensor network is well suited to this applica-
tion. A patient would have WISPs equipped with neural
probes placed inside the skull. These could then draw
power from and communicate with a device outside the
body, e.g., an RFID reader worn as a cap, bracelet, or
belt. We have completed initial studies that show the fea-
sibility of integrating neural sensors with the WISP [6].

3.3 The Elderly

Providing care for the elderly is one of the largest health-
care costs facing us today, particularly as the “baby
boomer” generation ages. Keeping people in their homes
for as long as possible significantly reduces these costs
and increases quality of life. The difficulty with this is
in detecting and reacting to emergencies, such as the pa-
tient falling or forgetting to take critical medication. Cur-
rently, families have no choice but to hire costly support
personnel to regularly check-in on their loved ones.

Traditional RFID has been explored to help monitor
the behavior of the elderly. For example, by having the
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patient wear a short range RFID reader bracelet and plac-
ing RFID tags on a toothbrush, toothpaste, and faucet,
software can infer that an elderly person is brushing her
teeth when these tags are read in succession [8]. Such
fine-grained sensing requires very small devices, and is
simpler and more respecting of privacy than competing
approaches using computer vision, where video of the
person is continuously recorded and analyzed.

Adding sensing (e.g., an accelerometer) to long range
RFID tags would have several key advantages. Rather
than requiring a person to wear a short-range reader,
which can be taken off, a few long-range readers could
be placed in the home and behavior could be determined
via direct communication with the objects that are being
interacted with. This explicit information would be more
accurate in detecting behavior than inference based only
on object identifiers.

RSNs are an appropriate solution for the above appli-
cations and those like them. Our initial studies using the
WISP show the potential of existing RFID sensing de-
vices for use in such applications. However, these stud-
ies involved only a single WISP. Combining many such
devices into a full RSN will require further research.

4 CHALLENGES

RSNs combine the technology of RFID and sensing with
the usage models of sensor networks. At the device level,
the WISP shows that it is feasible to combine sensing
with RFID. However, at the systems level, challenges
arise due to the mismatch between the RFID usage model
and that of wireless sensor networks. We detail several
challenges in this section.

4.1 Intermittent Power

RFID readers provide an unpredictable and intermittent
source of power. This makes it difficult for WISPs to as-
sure that RSN tasks will be run to completion. WISPs
are powered only when in range of a transmitting RFID
reader and, for regulatory and other reasons, readers do
not transmit a signal continuously. Instead, they trans-
mit power for a brief period before changing channels or
entirely powering down. For standard RFID tags where
the task is simply to transmit the identifier, this style of
communication is sufficient. However, it is a poor fit for
RSN tasks that span many RFID commands.

The WISP harvests energy from a reader and stores
this energy in a capacitor. When enough energy is har-
vested, the WISP powers up and can begin sensing and
communicating. However, sensing and communication
drain power from the WISP. This can result in the WISP
losing power in the middle of an operation depending on
the task and the reader behavior. A further complica-
tion is that receiving, transmitting, performing computa-

tion, and reading/writing to memory all consume differ-
ent amounts of energy.

To run tasks to completion, WISPs will require sup-
port for intermittently powered operation. They must be
able to estimate the energy required to complete a task,
perhaps based on task profiling or energy budgets, and
compare it with estimated reserves. To work well in this
regime, RSN devices may also need to cooperate with
RFID readers for power management. This would in-
volve signaling by either the reader, of its intended trans-
mission time, or by the WISP, of its needs. Even with
signaling, it will be difficult to predict power expecta-
tions because the rate at which energy is harvested de-
pends on the frequency of the reader and the proximity
of the device to the reader, both of which will change
over time. Thus, to increase the kinds of tasks that could
be supported, large tasks might need to be split into
smaller, restartable stages; intermediate results between
the stages could be maintained in device storage (flash or
RAM) or be offloaded to the reader.

To extend functionality when away from a reader, one
approach would be to provide a small amount of energy
storage on the device, e.g., a capacitor, and store excess
energy when close to an active reader. This storage ca-
pacitor would be small relative to a battery, because it
would be intended only for short term usage and is wire-
lessly recharged over time. The Data Logger WISP used
for the milk carton study takes this approach, using a
super-capacitor that, when fully charged, sustains low
duty-cycle operation for more than a day. The type of
tasks that this WISP enables would be limited, due to en-
ergy requirements, and the period of functionality would
be limited due to leakage. Additionally, unpowered op-
eration would likely stress tradeoffs between stages. For
example, writing to flash is significantly more energy in-
tensive than computing with RAM but preserves valuable
data for later use.

4.2 Asymmetric Sensing Protocols

The communication paradigm of RFID results in systems
that are limited by up-link bandwidth. When the data
of interest is simply each tag’s identity, this constraint
is not a problem. However, it makes it difficult to de-
velop efficient protocols for gathering sensor data that
changes over time. In WSNs, nodes are peers in terms
of the physical and link layers of their communication,
e.g., each mote has an 802.15.4 radio capable of send-
ing and receiving transmissions with other nodes that are
in range. In contrast, because they draw on RFID, RSN
nodes are highly asymmetric in terms of their commu-
nication abilities. With RFID, readers are able to trans-
mit messages to all tags and tags can transmit messages
to the reader. However, tags can do so only when the
reader initiates communication, and tags cannot commu-
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nicate directly with each other even when powered by the
reader.

These differences complicate the design of protocols
for gathering sensor data. Currently, WISPs with new
sensor data must wait until they are interrogated by a
reader. This increases the likelihood of many devices
wanting to use the bandwidth limited channel at the same
time. Techniques to perform data pre-processing within
the network (on each RSN device) could help to some
extent. However, the standard RFID strategy of identify-
ing and then communicating with each device is wasteful
as only some devices would have relevant data – a more
dynamic strategy based on the value of the sensor data
would be more effective.

Consider the eldercare application. A reader might
have hundreds of accelerometer WISPs in its field of
view. Because all the WISPs share a single reader chan-
nel, the update rate per tag would be very low if every tag
were simply queried for sensor data sequentially. How-
ever, at any given moment, only a few objects would typ-
ically be in motion (and therefore producing non-trivial
accelerometer sensor values). Furthermore, the set of ob-
jects that are moving would change dynamically, as ob-
jects are put down and picked up. One might want a pro-
tocol which gives priority to the most active objects, po-
litely “yielding” to new objects when they start to move.

Existing RFID solutions do not support anything like
this functionality. As a first step, one could have WISPs
with sensor activity below a threshold not respond to
the reader. But an appropriate threshold level might de-
pend on what is occurring in the room, and such a sim-
ple scheme would not support the “polite yielding” de-
scribed above.

For another example of what RSN protocols might be
asked to do, consider the blood application. When many
blood bags are read simultaneously, one might want to
interrogate the bags with the largest temperature excur-
sions first. But since the distribution of temperature ex-
cursions would not be known a priori by the reader, the
protocol would need to (implicitly) estimate this infor-
mation. It might for example ask if any WISP has a larger
temperature excursion thanE. If no device responds, the
E response threshold could be repeatedly halved until the
appropriate scale is found. The key requirement would
be to estimate an aggregate property of the data without
exhaustively collecting that data. Finally, RSN protocols
might be power aware as well. A WISP that was about to
lose power might be given priority over those with ample
power.

As the WISP has limited program space, it may not
be possible to program a WISP such that it will be well
matched to all possible application scenarios. For exam-
ple, WISPs may need different protocols for different de-
ployments, and these needs may change over time. How-

ever, the communication model of passive RFID means
that the reader can have a large degree of control over
what code is loaded and executed on the WISPs at any
point in time.

In contrast to mote message reception, which con-
sumes energy from small onboard batteries, WISP mes-
sage reception is powered entirely by the reader. Thus,
frequent and large code transfers are feasible, which
would allow for the complete retasking of WISPs with
costs in terms of latency only. Moreover, since down-
link communication is cheap when in range of the reader,
WISPs might not need to be as “smart” as motes. Rather
than requiring WISPs to interpret queries, readers could
tell WISPs exactly what to do, down to the instruction
level.

To fully exploit the potential of RSNs, new tools must
be developed. As a first step, we are developing an RFID
reader platform based on the Universal Software Radio
Peripheral (USRP). This platform, when used in con-
junction with the WISP, would allow for the development
of new protocols at both the MAC and PHY layers. Thus
far we have used it for monitoring RFID systems [1].

4.3 Repurposing C1G2

There would be substantial practical benefit to realizing
RSN protocols using the primitives of the C1G2 stan-
dard: Commercial off-the-shelf readers could be used for
RSN research and deployment, and WISPs would inter-
operate with ordinary (non-sensing) tags. However, the
extent to which RSN protocols could be implemented
within the C1G2 standard is an open research question.
Additionally, there is the practical consideration of com-
mercial readers not exposing low-level functionality and
not implementing the complete C1G2 specification. Be-
cause of this, even RSN protocols built on top of the
C1G2 specification might not be implementable using
standard readers.

Our experience with the Intel WISP suggests that basic
RSN applications could be approximated using standard
C1G2 readers. To read sensor data from a C1G2 WISP,
the device would first besingulated, at which point a
temporaryhandle would be requested from the tag. A
reader could then use this handle to address the device
and read sensor data from pre-defined memory locations.
However, the handle would persist only until the reader
singulates another tag or the tag loses power. Thus, read-
ing from more than one WISP would incur substantial
protocol overhead due to singulation and handle man-
agement. Consequently, simple use of the existing C1G2
protocol could provide some level of sensing functional-
ity, but at a significant cost in terms of efficiency.

Along with reading sensor data, the C1G2 protocol
could support basic sensor queries using theSelect com-
mand. If the reader knows that a sensor value is written
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to a particular memory location, it could issue aSelect
command with a mask which matches that location for
sensor values over a given threshold. Consequently, only
WISPs with sensor values over that threshold would re-
ply during the next frame. More generally, theSelect
command could be used as a general purpose broadcast
channel. The bit mask in the command could be repur-
posed and interpreted, in the most general case, as op-
codes and data. As multipleSelects could be sent be-
fore each frame, complex tasking and querying could be
achieved in this manner.

The above mechanisms show that there is potential
for using the C1G2 standard to implement RSN pro-
tocols. This would have the advantage of being im-
plementable using current reader technology, given a
reader that is sufficiently programmable. However, these
mechanisms may prove too inefficient or may simply be
poorly matched to many applications. Further experi-
mentation is needed.

5 CONCLUSION

By exploiting RFID technology, we believe that we can
expand the application space of wireless sensor net-
works to ubiquitous, embedded sensing tasks. We have
sketched sample sensor network applications in the space
between traditional mote networks and RFID for supply-
chain monitoring. We have described key systems and
networking challenges related to intermittent power and
RSN protocols for sensor queries. We expect RSNs to be
a fruitful new space for networking and systems research,
as there is significant work that must be done to translate
the capabilities of the WISP into full-fledged RSNs.
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Eat All You Can in an All-You-Can-Eat Buffet:
A Case for Aggressive Resource usage
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Abstract —In contrast to a focus on efficiency, we ad-
vocate aggressive usage of available resources. This view
is embodied in what we call the Buffet principle: con-
tinue using more resources as long as the marginal cost
can be driven lower than the marginal benefit. We illus-
trate through several examples how this seemingly obvi-
ous principle is not adhered to by many common designs
and how its application produces better designs. We also
discuss broadly the considerations in applying the Buffet
principle in practice.

1. INTRODUCTION
Alice walks into a restaurant with an all-you-can-eat

buffet. She wants to eat enough to avoid hunger until the
next meal. Should she eat based on the expected time until
her next meal, or should she eat as much as she can?

The second strategy is clearly superior. It provides the
best possible protection against hunger, limited only by
the capacity of Alice’s stomach. With the first strategy,
misestimation of the time of the next meal or of the activ-
ity level lead to hunger. And note that both strategies cost
the same.

Surprisingly, system design often follows the first strat-
egy today. For instance, consider the task of adding for-
ward error correction (FEC) to transmissions over a wire-
less channel. In current designs, the number of added
FEC bits tends to be a function of the anticipated bit error
rate [2, 4, 23, 8], independent of the available spectrum
resources. This method protects against packet loss as
long as the errors are fewer than anticipated but fails with
higher or bursty errors. This failure is unfortunate if there
are available resources that would otherwise go to waste.

Underlying the use of the first strategy today is a de-
sire for efficient use of available resources. In the FEC
example, adding the number of bits that is a function of
the common-case error rate is an efficient way to use the
spectrum. More bits might be considered wasteful usage.
Yet if that spectrum would otherwise go unused, the real
waste is in not taking advantage of it to improve perfor-
mance. As demonstrated by the examples above, a singu-
lar focus on efficiency can lead to poor performance.

Based on these observations, we put forth theBuffet
principle: continue using more resources as long as the
marginal cost can be driven lower than the marginal bene-
fit. Stated differently, efficiency of resource usage should
not be a driving concern if more resources can be used at
a lower cost than the benefit from the additional use.

Through several case studies, we show that applying
the Buffet principle produces designs that are qualitatively
different and arguably perform better. Our cases span a
range of systems and resource types, including erasure
coding over lossy channels, replication for reliability, man-
aging control traffic, and speculative execution. The di-
versity of these examples points to the broad applicability
of the principle.

The key challenge in applying the Buffet principle is
that the default way to greedily use resources tends to
be costly. For example, in the FEC scenario, if the net-
work is CSMA-based and a transmitter greedily pads its
data transmissions, other transmitters will suffer and total
network goodput will drop. Unless this challenge can be
overcome, efficiency-oriented designs are likely prudent.

Our case studies suggest that this challenge can be met
in many settings. In the FEC scenario, for instance, it can
be met by having transmitters send additional FEC bits
in separate, short transmissions that occur with a lower
priority, so that they are less likely to hinder other data
transmissions. In addition to prioritization, we identify
opportunistic usage when the resource is vacant, utility-
driven usage, and background usage as useful methods in
building Buffet-based systems.

We also discuss broadly the other challenges in apply-
ing the principle, its limitations, and scenarios where it
can be naturally applied. These scenarios are where the
opportunity cost of greedily using resources can be effec-
tively controlled; where the resource in question goes to
waste if not used; and where greedy usage by one user
does not hurt others. The potential limitations of Buffet-
based designs are that performance can become a function
of the amount of spare resources and greedy usage of one
resource can increase the latency of certain tasks and bot-
tleneck other resources.

We do not claim that the Buffet principle has never been
used before. For example, one recent work appears to use
it [6], and there are undoubtedly others as well. In con-
trast to these works, the contribution of this paper lies in
an explicit and general specification of the principle and
in provoking a broader discussion of its value. In this re-
spect, we are inspired by the end-to-end argument [16],
which articulates a broadly useful principle across the de-
sign of many systems.

We also do not claim that the principle can be univer-
sally applied, only that it offers a useful perspective on
system design. The most attractive aspect is that the per-
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Figure 1: (a): The thinking underlying many
efficiency-centric designs. (b): A simplistic illustration
of the Buffet principle.

formance of Buffet designs would be limited primarily by
the amount of available resources, rather than likely arti-
ficial limitations driven by efficiency concerns. However,
its full potential can only be understood in the context of
concrete, practical designs. We are currently building two
different systems based on the Buffet principle.

2. THE (SOMETIMES MISPLACED) FOCUS
ON EFFICIENCY

In this section, we describe how the focus on efficiency
manifests in system design today and when it may be un-
warranted. In many systems, the amount of resources
used depends on design choices, rather than it being a
simple function of workload. Examples include systems
that: i) add FEC to data transmitted over a communica-
tion channel, where the amount of resources consumed
depends not only on the payload but also on the extent
of error correction added;ii) replicate data over multi-
ple storage devices, where the amount of resources con-
sumed depends on the degree of replication;iii) prefetch
libraries into memory before user programs ask for it (to
speed execution), where the amount of resources used de-
pends on the aggressiveness of prefetching.

To those familiar with the design of such systems, Fig-
ure 1(a) may appear familiar. Thex-axis represents the
amount of resources consumed and they-axis represents
performance. In the FEC case, these can be the number of
added bits and the fraction of packets correctly received.

System designers often use such a graph as a guide.
They try to find the “sweet spot” such that:i) before it,
consuming more resources brings great additional bene-
fit; and ii) beyond it, there are diminishing returns. The
sweet spot is an attractive operating point when efficiency,
which may be characterized as performance per unit of re-
source consumed, is a central goal.

However, an exclusive focus on efficiency can be mis-
placed. We outline specific examples in§4, but the gen-
eral characteristics of such situations are the following.
• Extra resources can be used such that the marginal cost
is low and the resource itself is of “use it or lose it” variety,
that is, not using it leads to unnecessary wastage. Such
resources include disk space, channel capacity, etc. While

the returns from using resources beyond the sweet spot are
low, they nevertheless represent additional benefit, which
should be had when the cost is low.
• The amount of resource usage needed to hit the sweet
spot is hard to determine accurately because the system is
dynamic. This occurs, for instance, when the failures or
packet losses are bursty; here, even if the view of average
failure or loss rate is accurate, burstiness implies that at
any given instance the system may be operating far from
the sweet spot. The system would perform better and the
design may be simpler as well if the focus was on using
as much resource as possible, rather than trying to operate
at constantly a moving target.

We argue that instead of focusing exclusively on effi-
ciency, the designers must take a holistic look at the re-
sources at their disposal and use them aggressively. To-
wards this end, we propose the Buffet principle.

3. THE BUFFET PRINCIPLE

The Buffet principle is easily stated:continue using
more resources as long as the marginal cost can be driven
lower than the marginal benefit.Figure 1(b) illustrates it
somewhat simplistically, without capturing the dynamics
of marginal cost and benefit and thus the fact that the de-
signs may get less efficient as more resources are used.

The simplicity of the Buffet principle is deceptive, to
the extent that it might seem obvious and in wide usage.
But system design today is often not approached from the
perspective advocated by it. This point will be clarified
below and in the case studies outlined in the next section.

For a quick illustration, however, consider TCP, the
dominant transport protocol for reliable communication.
At first glance, it may appear that TCP uses the Buffet
principle because it tries to estimate and consume all avail-
able bandwidth. However, TCP consumes all available
bandwidth only if there is sufficient amount of new data,
for instance, during a large file transfer. It will not use the
spare bandwidth to proactively protect existing data from
loss.

For example, consider the case where TCP’s conges-
tion window is 8 packets and it receives only 4 packets
from the application. TCP will send only 4 packets even
though the path can support more, assuming that conges-
tion window reflects available bandwidth. It will send
more only after a packet is determined to be lost, which
takes at least a round trip time.

A Buffet-based transport protocol might preemptively
send each packet twice, thus using the spare bandwidth
to provide faster loss recovery. Of course, whether such
a protocol is practical depends on whether other data can
be protected from the aggressive bandwidth usage by du-
plicate packets.

As suggested by the example above, the key to success-
fully applying the Buffet principle is that the aggressive
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resource usage advocated by it must be enabled in a way
that does not hurt overall performance. Otherwise, the
marginal cost would be high and an efficiency-focused de-
sign would in fact be prudent. The default way to aggres-
sively use resources often has a high cost; for instance, the
duplicate packets above may lead to higher overall loss
rate. This reason is perhaps why many system designs
tend to focus on efficiency, almost by default; it is not the
case that designers are leaving obvious gains on the table.

Approaching the design from the perspective of the Buf-
fet principle challenges designers to devise methods to
lower the impact of aggressive resource usage. The exam-
ples below highlight that this is likely achievable in many
cases. The resulting designs can be qualitatively different,
sometimes simpler, and perform better.

Applying the Buffet principle also requires us to quan-
tify or at least compare the cost and benefit of using more
resources. This exercise is system-specific and must ac-
count for all relevant economic and performance-related
factors. We discuss this challenge in§5.1.

4. CASE STUDIES

We now describe several settings that can benefit from
Buffet-based designs. We classify them based on the na-
ture of the resource of interest. Our designs are not com-
plete but are meant to highlight the diversity of settings
where the principle can be applied. The next section has
a more general discussion of considerations surrounding
the application of the principle.

4.1 Wireless spectrum or bandwidth

4.1.1 Forward error correction (FEC)
Wireless media tends to be error-prone and the bits in-

ferred by the receiver may be corrupted in transmission.
Adding FEC bits can help recover from some of the bit
errors and improve performance by reducing packet loss.
The trade-off here is that each additional bit can lower
packet loss but also steal transmission capacity.

FEC designs that we are aware of either add a fixed
number of bits to each transmission or a number that adapts
based on estimated bit error rate (BER) [2, 4, 23, 8]. Cur-
rent designs use efficiency arguments similar to those in
§2 and add bits corresponding to the sweet spot where ad-
ditional bits present a diminishing reduction in loss rate.
However, by not explicitly considering available resources,
they either unnecessarily lose packets even when there are
spare resources or create unnecessarily high FEC over-
head under heavy load. Either way, throughput suffers.

A Buffet-based FEC design can enable the maximal
protection against bit errors that the amount of available
spectrum resources can provide. Such a design will add
some minimum number of FEC bits to all transmissions,
perhaps based on the expected common case BER. On top
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of that, it will greedily add more FEC bits as long as there
are spare resources.

We illustrate the benefits of such a design using a sim-
ple simulation experiment in which 8000-bit packets are
sent over a channel with 1 Mbps capacity and a BER of
10−6. We assume an optimal FEC code: whenk bits
of FEC are added, the packet is successfully delivered
if any 8000 out of 8000+k bits are received without er-
ror. Figure 2 shows the throughput in this setting with-
out FEC, with different levels of added FEC, and with a
Buffet design where the minimum number of FEC bits is
zero. FEC-K refers to adding FEC bits equivalent to K%
of the packet size – current FEC designs would sit on one
such curves. We see that the Buffet-based FEC performs
the best across the board. For any given load level, the
Buffet-based design matches the best other design. Indi-
vidual other designs suffer significantly either under low
load or under high load.

The example above also suggests how Buffet designs
can be simpler. Current FEC designs need to carefully
decide how many bits to add based on estimated BER or
packet losses [2, 4, 23]. This task is complicated by the
bursty and dynamic nature of the error process, and mises-
timations hurt throughput. Buffet designs skirt this com-
plexity altogether. By simply adding as many bits as the
currently available resources allow, they can get the best
performance at all load and BER levels.

A challenge, however, in the design of a Buffet-based
FEC system is to ensure that greedy addition of FEC bits
does not lead to fewer data bits being transmitted (e.g.,
due to carrier sensing). This property is easy to achieve
in systems where transmitters have a short- or long-term
dedicated share of the medium, as may be the case for
satellite links or long-distance point-to-point links [8,14].

It can also be achieved in CSMA-based systems. In-
stead of embedding all FEC bits in the data packet itself,
we can embed the minimum number of required bits in the
packet. The additional bits are transmitted separately with
lower priority, which makes it more likely for data trans-
missions of other senders to acquire the medium. Such
priority mechanisms can be implemented today using re-
cent WiFi hardware that supports quality of service (QoS)
enhancements (802.11e) [1]. We can further reduce the
impact of greedy FEC bits by making FEC-only packets
small, so that even when they do acquire the medium, they
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delay data transmissions by only a short amount of time.
We are currently designing such an FEC system. Our

focus is on VoIP and multimedia streaming. For these ap-
plications, the aggressive addition of FEC bits would lead
to more timely data delivery, compared to retransmissions
based on exponential backoffs.

4.1.2 Erasure coding for lossy paths
Rationale similar to the one above also applies to pro-

tection against packet losses. For this setting as well, cur-
rent designs can lead to avoidable data loss. As an exam-
ple, consider a recent system, called Maelstrom [5], that
uses erasure coding to combat losses in dirty fiber. It adds
a fixed amount of redundancy to the data stream, based on
the observation that loss rates in fiber are generally low
and adding more redundancy would use more resources
in the common case. With Maelstrom, data would be lost
whenever loss rate is higher than the level of protection. A
Buffet-based system can provide greater protection from
losses by utilizing all remaining path capacity for erasure
coded packets.

The key challenge here is to send coded packets such
that they do not steal bandwidth from normal data traffic.
This is easily accomplished in a system like Maelstrom
if sits on the two ends of the fiber. It can also be ac-
complished by marking redundant information as lower
priority, so that routers drop them first during periods of
congestion. A way to accomplish it without router sup-
port is to send erasure coded data opportunistically, only
when the queues are estimated to be empty.

We are building a system that uses the third method
above. It targets paths provided by cellular providers from
moving vehicles; such paths tend to be lossy with unpre-
dictable loss rates [15]. Their roughly stable capacity lets
us estimate when the queues are empty and erasure coded
packets can be sent. This system is meant for users that
subscribe to an unlimited data plan, and thus the marginal
cost of sending erasure coded data is only performance-
related, not economic. Our early experiments show a neg-
ligible drop in throughput due to aggressive coding, even
under high offered load. They also show an appreciable
reduction in packet losses.

4.1.3 Mobility updates
The performance of systems that exhibit a high-degree

of mobility, such as a mobile ad hoc network (MANET),
depends on the frequency of mobility updates. A higher
frequency yields better performance as nodes will have
a more up-to-date view of the topology, but it can also
swamp data traffic. Existing systems get around this trade-
off by setting the frequency of updates to a tolerable level
that is based on an analysis similar to the sweet spot rea-
soning presented in the previous section [10, 3]. Such sys-
tems may perform poorly in situations with higher than
anticipated mobility levels even when there is spare ca-
pacity to support a high update frequency.

A Buffet-based mobility update mechanism will pro-
vide better performance whenever spare capacity is avail-
able. The practical difficulty here again is ensuring that
the additional updates do not hurt data traffic. This can be
accomplished using a priority mechanism similar to the
one suggested above for FEC transmissions.

4.1.4 Routing in delay tolerant networks (DTNs)
As further evidence of the value of the Buffet principle,

we note that system design in the domain of DTN routing
has evolved from not using the principle to using it. Many
DTN routing protocols replicate messages along multiple
paths to improve their delivery probability. Older proto-
cols limit the amount of replication to prevent a few mes-
sages from dominating network resources [17, 12, 18].
Because this limit is not guided by the amount of avail-
able storage or bandwidth between replication end points,
these designs can perform poorly even when plenty of re-
sources are available. A recent protocol, called RAPID [6],
implicitly uses the Buffet principle. It replicates as much
as available resources allow. To prevent network dom-
ination by a few messages, it takes a utility-driven ap-
proach in which messages are replicated based on their
expected utility. Messages that have been replicated more
have lower utility. The authors demonstrate that RAPID
significantly outperforms older designs.

4.2 Storage

4.2.1 Long-term storage
Replication protects data against node failures and la-

tent sector errors in disks. The amount of replication,
however, is often pre-determined today, based on antici-
pated failure rate. This unnecessarily limits the protection
level even when there may be spare resources. A repli-
cation system based on the Buffet principle will provide
maximal protection given available resources.

Consider two scenarios. The first is replication across
one or more disks on a single computer. Today’s mech-
anisms such as various RAID configurations are based
on a preset amount of replication that provides protec-
tion against a certain number of failures. This can lead
to data loss when more failures occur even though ample
working storage may still be available. A Buffet-based
design will replicate aggressively to fill all available stor-
age, thus providing maximal possible protection. The key
challenge is to not hurt read and write performance in the
process, which we believe can be accomplished by rele-
gating the task of additional replication to the background
and conducting it only when the disk is idle.

The second scenario is replication across computers in
a data center or in a wide-area peer-to-peer system. Here
too, the system will be more reliable with replication that
uses all available resources rather than a fixed replication
level. The key challenge is to manage the bandwidth im-
pact of aggressive replication, which is a particularly rel-
evant concern for the wide-area setting. We believe that
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this concern can be handled through background transfer
protocols such as TCP Nice [21].

4.2.2 Short-term storage
Program execution can be slowed by the time it takes

to load the program and the libraries it uses into memory.
One can speed this up by preemptively loading in memory
commonly used binaries when there is space (and time)
available. Indeed, this strategy has already been proposed
or implemented for modern operating systems [9, 19]. A
Buffet-based strategy will maximize performance by ag-
gressively filling available memory, instead of being lim-
ited to the most promising candidates.

Similar ideas have been explored in the context of pre-
fetching web pages that users are likely to view in the fu-
ture [11, 22, 13]. If the bandwidth impact of such prefetch-
ing can be controlled, for instance, using TCP Nice, such
systems should aggressively fill available cache capacity
to maximize user-perceived performance.

4.3 Computational resources
Speculative execution is a commonly used technique

in modern processors. In it, parts of code are executed
even though the results may eventually be discarded, de-
pending on the outcome of the (if) conditions that oc-
cur prior to these parts. The execution of the program
is non-sequential to parallelize processing. When the re-
sults prove useful, speculative execution boosts perfor-
mance. The performance benefit of speculative execution
depends on the accuracy of branch prediction. Conven-
tionally, only one branch is speculatively executed even
though additional resources may be available for execut-
ing more branches. More recent designs attempt to ex-
ecute multiple paths [20]. For maximal performance, a
Buffet design would speculatively follow as many paths
as current resources levels allow. As the number of cores
inside processors increase, such a design would increas-
ingly outperform strategies that limit speculative execu-
tion to more likely paths.

5. APPLICABILITY CONSIDERATIONS

In this section, we discuss broadly the issues related to
applying the Buffet principle in practice. These are based
on our early experiences and will be refined over time.

5.1 Challenges in applying the principle
There are two key challenges. The first challenge of

course is ensuring that greedy resource usage does not de-
tract from other productive work. The last section men-
tions several techniques to address this challenge in the
context of specific examples. We summarize them here.
One technique is prioritization, so that greedy tasks get
lower priority. Prioritization can be explicit, e.g., embed-
ding priority in packet headers for routers. It can also be
implicitly implemented by sources, by them deferring to

other tasks, e.g., background transfers of TCP Nice [21]
and the use of higher inter-frame spacings in 802.11e [1].
Prioritization may not suffice in settings where aggressive
usage of multiple nodes need to be traded-off with one
another based on their relative benefit. Utility-driven re-
source consumption, which is a generalization of prioriti-
zation, can help here. In it, tasks are executed in order of
their estimated utility, as in RAPID [6]. Yet another tech-
nique is opportunistic usage, as in our erasure coding sys-
tem (§4.1.2) in which greedy usage occurs only when the
resource is idle. We believe that one of these techniques
or a combination can be applied in many situations.

The second challenge is quantifying or at least being
able to compare the marginal benefit and cost of using
more resources. For cost, the primary difficulty is tak-
ing into account the opportunity cost of greedily using re-
sources, that is, for what else could those resources be
used. This is not a concern where the greedily allocated
resource can be easily reclaimed when needed or would
otherwise remain unused. But it could be problematic oth-
erwise. Additionally, if precise accounting is desired, we
need to quantify the cost of the side-effects produced by
greedy usage as well (§5.3).

We can avoid the task of quantifying marginal cost by
driving it to zero or negligible levels. The techniques
above for managing greedy usage help here. If done suc-
cessfully, we can continue to use more more resources
until the marginal benefit becomes negative.

Quantifying marginal benefit can also be tricky, e.g.,
in the face of correlated failures [7]. But because the
marginal benefit of using more resources is usually pos-
itive, more resources can be used whenever the marginal
cost is negligible.

5.2 Applicable resources
Two categories of resources are well-suited for apply-

ing the Buffet principle. The first is non-conservable re-
sources, i.e., those that would go to waste if not used.
Storage, bandwidth, and computational resources are typ-
ically non-conservable. An example of a conservable re-
source is battery power.

We do not claim that the Buffet principle does not ap-
ply to conservable resources, only that it is easily applied
to non-conservable resources. Applying it to conservable
resources requires a more involved evaluation of marginal
benefit that includes predictions of future behavior.

The second category is where the resource is not shared
with non-Buffet users who may not be able to differentiate
normal usage from greedy usage with lower value. Such
users might reduce their own consumption on observing
aggressive usage, which would reduce overall system through-
put. In some cases, Buffet users can co-exist with non-
Buffet users. For instance, our wireless FEC design co-
exists by implementing greedy usage at lower priority and
deferring to non-Buffet users.
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5.3 Side effects of greedily using resources
We have encountered three side-effects. First, the sys-

tem performance becomes a function of the workload it-
self. For example, our FEC design loses fewer packets
at lower loads and more at higher loads; in current de-
signs, the loss rate for transmitted packets is independent
of load. One might argue that such load-dependent per-
formance abstraction is hard for applications. But observe
that performance is already often load-dependent. For in-
stance, wireless loss rate increases with load because the
collision frequency increases. Even along wired paths,
loss rate observed by applications can depend on load.
Sending at 0.9 Mbps along a 1 Mbps capacity path leads
to no loss but sending at 1.1 Mbps leads to 10% loss.

The second side-effect is that greedy usage can strain
the system. It can increase task-completion latency. For
instance, a read request for a disk block will have to wait
longer if it arrives during greedy replication. The level of
latency increase depends on how fast the greedy task can
be completed or preempted. It can be controlled by keep-
ing individual greedy tasks short or preemptable. Another
strain is that aspects of the system that were originally not
the bottleneck can become bottlenecks with greedy usage.
For instance, disk I/O bandwidth may become a bottle-
neck with aggressive replication, even if it was not previ-
ously. Careful design is needed to alleviate this problem.

A final side-effect is that with greedy usage, the re-
sources will frequently appear fully utilized. This behav-
ior will typically not matter but it may in some cases, for
instance, if administrators use utilization levels to make
provisioning decisions. This issue can be dealt with by
separately counting normal and greedy usage.

5.4 Benefit of the principle in practice
It depends on the workload and the amount of available

resources. So it might vary from none to a lot. For exam-
ple, in our erasure coding system, a Buffet-based design
leads to zero loss under low load and a a loss rate that is
equal to the underlying path loss rate under heavy load.
The appropriate view of a Buffet design is that its perfor-
mance is limited by the amount of spare resources instead
of specific design parameters, and thus it provides the best
performance for a given level of resource investment.

6. CONCLUSIONS
We articulated the Buffet principle, which advocates

a different perspective on system design than a singular
focus on efficiency. Through several examples, we ex-
plain how Buffet designs differ from efficiency-centric de-
signs and how they are likely to perform much better. We
also discussed broadly the considerations surrounding the
application of the principle in practice. This discussion
points to both strengths as well as limitations. Overall,
we find the principle promising and offering a useful per-
spective on system design. Instead of being limited by

artificial design choices, Buffet designs have the poten-
tial to provide the best performance for the level of avail-
able resources. Its eventual worth can be understood only
by studying the performance of many concrete designs,
which is an active area of research for us.
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Plugging Into Energy Market Diversity

Asfandyar Qureshi (MIT CSAIL)

ABSTRACT

In North America, electricity prices exhibit both temporal and

geographic variation—the later exists due to regional demand

differences, transmission inefficiencies and generation diversity.

Using historical market data, we characterize the variation and

argue that existing distributed systems should be able to exploit

it for significant economic gains. We consider pricing in cloud

computing systems, and also use simulation to estimate the ad-

vantage of dynamically shuffling computation between different

energy markets.

1 INTRODUCTION

Electricity is becoming increasingly expensive, and now

accounts for a large fraction of the cost of ownership for

data centers [1]. It is expected that by 2012, in the US,

3-year energy costs for data centers will be at least twice

as much as the server investment [2].

At the same time, deregulation, regional demand vari-

ations and energy source diversity have resulted in an un-

even and occasionally volatile cost landscape. In the US,

electricity prices at two different places can have very dif-

ferent annual averages (figure 1), and prices at a location

can vary day to day by a factor of five (figure 4).

Like cost, the utility gained by a distributed system’s

clients may also depend on location. Generally, a client

receives less utility if their request is served far away from

them. Many existing systems typically maintain multi-

ple replicas, routing clients to nearest replicas, attempting

to maximize client utility, while ignoring the geographic

variation of cost.

In such replicated systems, it is possible to trade-off

between computing in a high cost market versus comput-

ing in a lower cost market but with reduced client utility.

Shifting clients away from their best replicas, to ones sit-

uated in cheaper energy markets, may reduce quality-of-

service but yields significant monetary savings.

To some extent, this trade-off is implicit in the place-

ment of large data centers in low-cost energy markets

(Google in Oregon and Microsoft in Illinois) rather than

in high-demand locations (e.g. New York City). We argue

that, due to existing price volatility, this trade-off should

be a dynamic choice rather than a static one.

This paper investigates the implications of electricity

price volatility and locational variation to Internet scale

systems. We argue that there is something to be gained,

by building price-sensitive distributed systems, that au-

tomatically integrate up-to-date market information, and

make cost/performance trade-offs.

We sketch the connection between computing cost

and energy cost and establish the significance of loca-

tional variation. Using historical electricity market data,

we show that the day-to-day, monthly, and yearly varia-

tion is substantial. We note that daily prices, at locations

near Internet peering points, exhibit exploitable volatility.

We briefly cover how cloud computing providers

could increase their margins by being sensitive to geo-

graphic variation in energy prices—either with price dif-

ferentiation or by using cost-optimized routing.

Finally, we use simulation and a 2006-2008 history of

US market prices to explore cost/performance trade-offs

within Internet-scale replicated systems. We simulate se-

lective blackouts, where one or more replicas are deacti-

vated in response to market signals. We quantify possible

energy cost savings and discuss practical implications.

To the best of our knowledge, this paper contains

the first proposal for distributed systems to use online

optimization to algorithmically exploit information from

electricity futures and/or spot markets.

2 BACKGROUND

2.1 Concerns about Electricity Cost

Data center energy costs are becoming an increasingly

dominant component of overall operating costs. The cost

of electricity is poised to overtake the cost of equipment

[3]. In the US: in 2000 three-year energy costs were one-

tenth the server equipment expenditures; by 2009 the cost

of electricity is expected to equal server expenditure; and

by 2012, energy is expected to cost at least twice the

equipment investment [2]. These expectations take into

account recent advances in data center energy efficiency.

For a denser non-traditional data center (e.g., Sun’s S20

[4]), 2-year energy costs could already exceed the equip-

ment cost, depending on configuration and location.

Additionally, in absolute terms, servers consume a

substantial amount of electricity. Servers and their sup-

port infrastructure (e.g., cooling) accounted for about

1.2% of US electricity consumption in 2005, about 45

million MWh, or 2.7 billion dollars [5]. By 2010, this is

projected to grow to 3% of total US consumption [5].

Consequently, for companies with large computing

facilities, even a fractional reduction in electricity costs

can translate into a large overall savings. For example, it

was estimated that Google owned 450,000 servers world-

wide in 2006 [6] and that each server consumed upwards

of 200 watts [7]. Each watt used by a computer results

in at least two watts drawn from the electric grid [1, 3].

We can, conservatively, estimate that Google servers used

around 1.6 million MWh in a year, or 95 million dollars

1
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Location 2004 2005 2006 2007

New York (NYC) 63.1 93.5 70.9 77.1

New England (MA) 53.7 78.6 60.9 67.9

Southwest (Palo Verde) 50.1 67.4 57.6 61.7

Southeast (SERC/FRCC) 48.6 70.8 55.5 59.1

PJM Interconnect (West) 41.7 60.6 50.1 56.9

Northwest (MID-C) 44.5 63.0 50.2 56.6

California (NP-15) 38.4 54.4 43.4 54.6

Texas (ERCOT-North) 42.3 66.5 51.4 52.0

Midwest (Cinergy) 38.4 40.5 46.1

Figure 1: Annual average prices [9], in $/MWh, sorted by 2007 prices.

worth of electricity, at US rates1. Therefore, every 1%

savings in energy cost could save a large company like

Google, a million dollars a year. Google is not alone. Mi-

crosoft expects to deploy 800,000 servers by 2011 [6],

and the five leading search companies may have already

deployed more than 2 million servers [8].

New cooling technologies, architectural redesigns,

DC power, multi-core servers, virtualization and energy

aware load balancing algorithms, have all been proposed

as ways to reduce the energy consumed by a single data

center. That work is complementary to ours. However,

this paper is concerned with reducing cost—our approach

can achieve this, even if it causes consumption to rise.

2.2 Electricity Markets

Although market details differ regionally, this section

provides a high-level view of deregulated electricity mar-

kets, providing a context for the rest of the paper. The

discussion is based on markets in North America, but the

ideas generalize to other regions with diversified markets.

Electricity is produced by government utilities and in-

dependent power producers using a variety of sources.

In the United States, this includes nuclear (about 10%),

coal (around 30%), natural gas (nearly 40%) and hydro-

electric (roughly 8%) [10].

Producers and consumers are connected to an elec-

tric grid of transmission lines. Electricity cannot be stored

easily, so supply and demand must continuously be bal-

anced. In addition to connecting nearby nodes, the grid

can be used to import and export electricity from/to dis-

tant locations. The United States is divided into ten mar-

kets [9], with varying degrees of inter-connectivity. Con-

gestion on the grid, transmission line losses, and market

seams issues either limit how electricity can flow, or in-

fluence the price at a given location [11].

The existence of rapid price fluctuations reflects the

fact that short term demand for electricity is far more elas-

tic than short term supply. Electricity cannot always be ef-

ficiently moved from low demand areas to high demand

areas, and power plants cannot always ramp up easily. In

contrast, we have long used high performance networks

and load balancing techniques to relocate computation.

We can move our demand closer to a low-cost supply.

1450, 000 × 200W × 2 × 24h × 365 = 1.5678 × 1012Wh @ 6¢/kWh

Location Nearby City Hub Market

A San Jose, CA NP15 California

B San Diego, CA SP15 California

C Portland, OR MID-C Northwest

D Chicago, IL Illinois Midwest

E Ashburn, VA PJM-West PJM

F Houston, TX ERCOT-H ERCOT

G Miami, FL Florida Florida

Figure 2: Seven locations, near different Internet exchange points, and

in different electricity markets.
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(a) October 2007 (b) June 2008

Figure 3: Monthly variation in wholesale market prices can be substan-

tial and geographically dissimilar. For example, comparing (b) with (a):

prices at F trebled, while those at C halved.

While short-term and long-term contracts may ac-

count for most of what is consumed, electricity can also

be bought in wholesale markets. In most regions, day-

ahead, hour-ahead, and spot markets exist. In this paper

we focus on day-ahead markets. Such markets allow con-

sumers to determine the price of electricity the day before

it is delivered. Day-ahead prices are forward signals, that

can be used to decide how much to consume.

A caveat: companies running data centers may have

contracts with electricity providers, do not buy directly

from the wholesale market, and so may be buffered from

the price volatility we are looking to exploit. Contractual

details are hard to come by; this paper ignores contracts.

In reality, there is a great deal more complexity, but

our market model is simple: a futures market exists; day-

ahead prices are accessible and variable; and different lo-

cations see prices that are not perfectly correlated.

2.3 Computation Cost

A service provider accepts requests, performs some com-

putations, and produces responses. The provider incurs

some cost in fulfilling this demand.

We model the total computation cost (C) incurred by

a service provider at a given location as follows: a large

fixed component, the infrastructure cost (I), and a signif-

icant variable component (V), which is a monotonically

increasing function of demand.

In this formulation, I includes the amortized infras-

tructure investment, staff salaries, etc. V includes both

network and energy costs, but we ignore network costs.

Studies have shown that electricity consumption closely

follows CPU utilization [12]. Using techniques like multi-

core CPUs and virtualization, resources can be allocated

on-demand, causing electricity use to step up.

The marginal computation cost is the incremental cost

2
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Figure 4: Day-ahead wholesale market prices exhibit significant volatility. For example, prices at E were $54/MWh in (b) but $256/MWh in (d).

of handling one more request, or the derivative of C w.r.t.

demand. The average cost is the mean cost per request,

or C divided by demand.

Differences in electricity prices will always show up

in the marginal computation cost for different locations,

assuming constant server energy efficiency. If electricity

costs are a large enough fraction of overall cost, price

volatility will begin to palpably affect average cost.

3 ELECTRICITY PRICE VARIATION

This paper posits that electricity prices vary dynamically,

that prices at different locations are not perfectly corre-

lated, and that differences can be exploited for economic

gain. Rather than presenting a theoretical discussion, we

take the experimental approach, grounding ourselves in

historical market data, from multiple sources [9, 10, 13].

We begin with average annual electricity prices, tabu-

lated in figure 1 for several locations. In 2007, Northeast

prices were over 1.5 times Midwest prices, contributing to

the impracticality of large data centers in the Northeast.

The remainder of the paper focuses on the smaller set

of seven locations from figure 2, all of which are near ma-

jor Internet exchange points (IXPs) and cover a number of

diverse electricity markets.

Apart from annual variation, prices also exhibit sea-

sonal and monthly variation. Figure 3 shows average

prices for two different months. In the South, in June

’08 the energy needed to handle a million requests would

have cost twice as much in Houston (location F) com-

pared to Miami (G). In October ’07, the cost difference

would have been relatively insignificant. Similarly, on

the West coast, in June, electricity in California (A) was

thrice as expensive as electricity in Oregon (C), but in

October prices were roughly the same. Furthermore, the

relative ordering of prices was very different in the two

months. Houston (F), for example, moved from the sec-

ond cheapest market to the most expensive.

Part of the market diversity arises because different

regions produce electricity in different ways. For exam-

ple, in 2006: in Oregon, natural gas accounted for 8%

and hydroelectric for 68% of the summer generation ca-

pacity; whereas in Texas, natural gas accounted for 71%

and coal for 20% of the summer capacity [10]. Conse-

quently, record high natural gas prices in 2008 have had

much larger impact on Texas than on Oregon.

Prices in wholesale markets also exhibit significant

day-to-day volatility, for a variety of reasons. For exam-

ple, a localized event such as a heat wave in California

could drive up local demand, elevating West-coast prices.

Figure 4 shows day-ahead prices for four different days.

Price spikes such as those shown in figure 4a and figure

4d occasionally occur. Price volatility has many hard-to-

predict causes (e.g., accidents, equipment malfunctions,

weather, fuel costs, demand volatility, market manipu-

lation, etc.). Figure 5 shows a more detailed picture for

some locations, plotting the evolution of day-ahead mar-

ket prices from January 2006 through June 2008. Some

notable features: seasonal effects, short-term spikes, and

only partially correlated behaviour. A detailed discussion

is beyond the scope of this paper.

In this paper we restrict ourselves to day-ahead market

prices. However, significantly more price volatility ex-

ists in hour-ahead and spot markets [11]. Traditional con-

sumers cannot respond quickly enough, but distributed

systems can re-route computation at millisecond scale, to

modulate their consumption. Beyond our findings in this

paper, there may be opportunities within spot and hour-

ahead markets, that traditional electricity consumers can-

not exploit, but distributed systems can exploit.

4 PRICING IN CLOUDS

With the rise of web-based computing and the computing-

as-a-utility model, many companies are renting out their

infrastructure to third-party applications. Examples in-

clude Amazon’s EC2, Google’s AppEngine and Sun’s

Grid. Applications are billed by the resources they con-

sume: computation cycles, network I/O and storage.

How much does it cost a provider to perform one unit

of work on behalf of a hosted application? How much

does it cost Amazon to handle a single client request on

behalf of a hosted web application?

Cost depends on where the request is routed. We have

already established that marginal computation costs can

differ radically with location and in time. Furthermore,

refer back to the cost model from section 2.3. Large cloud

providers (Amazon and Google) will already need to ab-

sorb their fixed costs. They need to build multiple data

centers, and keep machines up and running, to support

their own primary services. The cost to them of perform-

ing some incremental work on behalf of a hosted applica-

3
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Figure 5: Day ahead index prices at different hubs, from January 2006 through June 2008 [13]. Note the seasonal dips in the hydro dominated

Northwest, and the 2008 upward trend in California and Texas, both of which are heavily dependent on natural gas. Price spikes reached $350.

tion will be dominated by the marginal cost, mainly the

cost of the additional watts they expend.

By charging a fixed compute-price, while being

able to decide where to buy electricity, cloud providers

are missing an opportunity. With a price structure that

embraces energy cost diversity, and by using a cost-

conscious replication strategy, cloud providers can in-

crease their margins or lower their prices.

Buyers care about how much they are charged and

what performance their users receive. Providers can build

energy cost differences into some pricing plans, allow-

ing buyers to make trade-offs. For example, free appli-

cations should always be hosted in the lowest cost loca-

tions, capacity permitting. Additionally, some buyers may

be willing to pay premiums for regionally optimized per-

formance. The Dallas Morning News website, having re-

gionally concentrated demand, values proximity, and can

therefore be billed to compensate for elevated prices.

These ideas can be mapped to content distribution net-

works. For instance, a CDN provider could charge a pre-

mium for hosting content in high energy cost markets.

5 SELECTIVE BLACKOUTS

Internet-scale systems composed of replicas in differ-

ent electricity markets can exploit price disparities to

substantially reduce their total energy costs, by using

Information from energy futures markets, and dynami-

cally shifting consumption away from high-cost regions.

Through simulation, we show that an approach based on

this idea could yield considerable monetary savings.

5.1 System Model

In the systems we focus on, storage and computing in-

frastructure can be decomposed into a number of blocks,

where each block is a complete replica of the system2.

2Less flexible but acceptable: strict subsets are complete replicas.

The blocks may be:

• For large companies, the blocks are large data cen-

ters, owned and operated by the company. Each

block can have many thousands of physical ma-

chines, and easily consume 4500 kW [1].

• The blocks can be much smaller data centers. In the

extreme, blocks may be one or more of Sun’s data-

center-in-a-container [4], each with fewer than 300

machines and 500 kW of peak consumption.

• For small providers, the different blocks can be

leased floor-space in data centers owned by other

parties3. The main difference between this case and

the above cases is control over infrastructure: in the

earlier cases if the provider decided to turn off the

machines, they can also shut off cooling etc.

An incoming client request to such a system can be

served by any of the replicas. In existing systems, replicas

tend to be placed near IXPs, such as the locations in figure

2. Conventionally such systems attempt to keep all replica

locations active. In order to maximize performance, client

requests are routed to their closest replicas.

In the discussion that follows, we assume that the sys-

tem is over-provisioned: some subset of the replicas has

enough capacity to handle the peak load.

We also make a number of simplifying assumptions.

We model demand as constant and uniformly distributed.

When some blocks are deactivated, we assume client re-

quests will be spread evenly over the remaining blocks

and that total energy use is therefore constant. Further-

more, we assume that a deactivated block consumes zero

energy, and that the startup/shutdown process also con-

sumes no energy4. Finally, we assume that shutting down

one replica does not affect prices at any other replicas.

3 Our work is only relevant when electricity charges are metered.
4 This ignores the cost of synchronization during replica reactivation.
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Figure 6: Total electricity costs for seven replica simulations, using

2006-2008 market data. A cost of 1.0 represents running all seven.

We use the number of active replicas as a first-order

approximation for performance. We defer a proper analy-

sis of the performance impact of our proposal.

5.2 Selective Blackouts

With enough excess capacity, one or more replicas can

be turned off. This will result in suboptimal system per-

formance and reduce reliability, but can also significantly

reduce energy costs.

Deciding which replicas should be active on any given

day can be modeled as an optimization problem. Each

day, day-ahead market prices can be fed into an auto-

mated mechanism that determines which replicas should

be deactivated the next day. The set of active replicas

changes infrequently, at most once per day, making this

compatible with existing routing techniques (e.g., DNS).

Given n replicas, we constrain that no more than k

replicas can be deactivated on any given day. Thus the

(n−k) lowest cost replicas are always active, regardless of

absolute prices. This provides a consistent performance

baseline. Replicas remain active as long as their prices

are close to the highest price we must pay for baseline

performance. We only force deactivation when a signifi-

cant price disparity exists.

More formally, given day-ahead prices, we derive the

set of active replicas A as follows:

L = {(n − k) lowest cost replicas}

φ = max({pricer for r ∈ L})

A = {replica r iff pricer ≤ (1 + τ) · φ}

τ is a threshold parameter, expressing our sensitivity

to price disparity, as a percentage of the baseline price φ.

5.3 Simulation Results

We simulated the above selective blackout mechanism us-

ing historical prices, wholesale market data from 2006

through 2008 [13], and found that significant cost savings

were possible. Demand was modeled as being constant in

time and uniformly distributed in space.

North America Seven. We first simulated a seven-node

system, one node at each location from figure 2. Figures

6 and 7 summarize the results.

Simulations imply that adding a single redundant

node can reduce total electricity costs by 5% (see figure
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Figure 7: The distribution of the number of active replicas, from simu-

lations using 2006-2008 market data, with n = 7 and k = 4.

6, 0% threshold and k = 1). These savings are the result

of being able to dynamically deactivate nodes during pe-

riods of locally elevated prices. Statically picking the best

six locations is not enough. Section 3 already illustrated

that an always optimal set of six may not exist, and our

simulations reinforced this: all nodes were active some of

the time. The most active 6-subset accounted for 27% and

the next most active 23%, so no subset dominated.

For k ≥ 4, blackouts can result in total energy costs

lower than the average cost of the least expensive market

(MID-C line in figure 6). With only one baseline node

and six redundant nodes (τ = 0, k = 6), energy cost is

85% that of the cheapest node. This is a savings of 27%,

compared to running all seven.

The threshold parameter τ can be used to trade off

between cost and performance. Figure 7 shows how the

number of active replicas depends on τ for k = 4. With a

threshold of 5%, the median number of active replicas is 4

(µ = 3.9) and the total cost roughly matches the cheapest

market (see figure 6). With a threshold of 25%, the me-

dian number of active replicas is 6 (µ = 6.1) and the cost

is close to the second-cheapest market. At the same time,

in contrast with building a large data center in a cheap

market, computation resources are now more likely to be

near an IXP that provides a fast path to a random client.

This can dramatically improve performance.

West Coast Three. With all seven nodes, we can take

advantage of regional diversity (e.g., a heat-wave in Cal-

ifornia does not put pressure on the Illinois hub). Even

though, nearby locations in the same market tend to have

correlated prices, selective blackouts can still be useful.

To demonstrate this, we simulated a three node west-

coast system (NP15, SP15 and MID-C). With blackouts

(50% threshold, k = 2) the resulting total cost is 6% lower

than the cost of continuously running all three, and 8%

higher than the cost of computing everything in Oregon.

The median number of active replicas is 3 (µ = 2.7). For

this to work, Oregon must retain maximum capacity—on

some days it is the only active replica. See figure 8.

5.4 Some Lessons

Building extra, occasionally deactivated, replicas will in-

cur some additional infrastructure cost. However, we have

shown extra replicas can reduce total energy costs.

5
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Figure 8: West coast simulation results.

If expected energy savings exceed the up-front in-

frastructure investment and added maintenance costs, it

makes economic sense to use some variant of this black-

out mechanism. If data center energy costs in the US dou-

ble in the next four years [2], or if the replicas are modular

data centers [4] with low fixed costs, dynamic blackouts

could make a tangible impact on operating costs.

Additionally, apart from yielding savings, blackouts

can reduce risk, by dampening the impact of unantici-

pated price fluctuations. The mechanism described here,

for example, would automatically integrate market infor-

mation and route around multi-day weather problems.

The choice of where to build a data center is typically

seen as a static optimization problem. If energy costs con-

tinue to rise relative to equipment, it may be better mod-

eled as a dynamic problem. Despite the economies of

scale inherent to large data centers and the possibility of

local tax incentives, a company looking to build a mono-

lith should consider building many smaller blocks (e.g.,

[4]) spread over different energy markets. Redundant ca-

pacity is already built into these systems. It may be better

to spread these resources, rather than concentrating them.

6 CONCLUSION

We set out to show that the diversity and day-to-day

volatility of today’s electricity markets can be exploited

in some meaningful way by existing distributed systems.

Using data from wholesale electricity markets and simu-

lation, we were able to show that replicated systems can

make meaningful cost/performance trade-offs and may be

able to achieve substantial energy cost reductions. Many

possibilities for future work exist within this area.

In order to understand the trade-offs, a good perfor-

mance model is necessary. We use the number of ac-

tive replicas as a coarse performance metric. A better ap-

proach would have been to analyze the network latencies

between clients and active replicas, assuming a uniform

client distribution, using census data, or using server logs.

The impact on reliability should also be considered.

Another convenient simplification was to assume con-

stant demand. In reality, demand varies regionally and

temporally [14, 15]. Depending on the situation, there

may be ways to exploit features within demand signals.

We presented selective blackouts as an illustration of a

price-conscious optimization mechanism, rather than as a

proposed design. A mature mechanism should synthesize

information from both supply (cost) and demand (per-

formance/utility) and derive the best way to use avail-

able resources. In addition, hour-ahead and spot-prices

are more volatile than day-ahead prices, so more frequent

optimization should yield higher savings.

Further, our idea of relating energy costs to compu-

tation costs implies that auctions within computing grids

can be used to match buyers and sellers, to increase the

total economic surplus in the computing utility market.

Finally, contracts complicate the picture, making it

unclear who would reap the savings we calculated. Power

providers may be willing to index charges to market

prices, since this transfers some risk to consumers. If,

on the other hand, contracts fix the cost of electricity, a

deactivated data center would allow the producer to sell

the surplus electricity on the wholesale market. While

this would not impact the data center’s bottom line, the

provider would benefit, and—if resource scarcity has

caused the price elevation—the public would benefit.
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ABSTRACT 

Very large data centers are very expensive (servers, power/cool-

ing, networking, physical plant.)  Newer, geo-diverse, distributed 

or containerized designs offer a more economical alternative.  We 

argue that a significant portion of cloud services are embarras-

singly distributed – meaning there are high performance realiza-

tions that do not require massive internal communication among 

large server pools.  We argue further that these embarrassingly 

distributed applications are a good match for realization in small 

distributed data center designs.   We consider email delivery as an 

illustrative example.  Geo-diversity in the design not only im-

proves costs, scale and reliability, but also realizes advantages 

stemming from edge processing; in applications such as spam fil-

tering, unwanted traffic can be blocked near the source to reduce 

transport costs. 

Categories and Subject Descriptors 

K.6.4 [System Management]: Centralization/decentralization. 

General Terms 

Management 

Keywords 

Embarrassingly Distributed, Economies of Scale, Spam, POPs 

(Points of Presence). 

1. Introduction 
Large data centers are being built today with order 10,000 servers 

[1], to support “cloud services” – where computational resources 

are consolidated in the data centers.  Very large (mega) data cen-

ters are emerging with order 150,000 multi-core servers, realized, 

for example, as 150 containers with 1000 servers per container.1  

In total, cloud service providers are on a path to supporting up to a 

million servers (some providers are rumored to have already 

crossed this point), in tens to hundreds of locations. 

Imagine a family of solutions with more or less distribution, rang-

ing from a single POP (point of presence) to a million.  This paper 

will explore trade-offs associated with size and geo-diversity.   

The trade-offs vary by application.   For embarrassingly distri-

                                                                 

1http://perspectives.mvdirona.com/2008/04/02/FirstContainerized

DataCenterAnnouncement.aspx 

buted applications, i.e. applications with relatively little need for 

massive server to server communications, there are substantial 

opportunities for geo-diversification to improve cost, scale, relia-

bility, and performance.  Many applications fall somewhere in the 

middle with ideal performance at more than one POP, but less 

than a million.  We will refer to mega-datacenters as the mega 

model, and alternatives as the micro model. 

Table 1: Options for distributing a million cores across more 

or less locations (POPs = Points of Presence). 

POPs Cores/POP Hardware/POP 

Co-located 

With/Near 

1 1,000,000 1000 containers 
Mega-Data 

Center 10 100,000 100 containers 

100 10,000 10 containers 
Fiber Hotel 

1,000 1,000 1 container 

10,000 100 1 rack Central Office 

100,000 10 1 mini-tower 
P2P 

1,000,000 1 embedded 

Large cloud service providers (Amazon, Microsoft, Yahoo, 

Google, etc.) enjoy economies of scale.  For example, large pro-

viders enjoy a wide set of buy/build options for the wide area 

network to support internal and external data transport to their 

data centers, and can create and manage dedicated networks, or 

buy network connectivity arguably at costs near those incurred by 

large network service providers.  In the regional or metro area 

(e.g., pipes from data centers to the wide area network) and in 

peering (e.g., to large broadband service providers), these large 

cloud service providers have less choice and may incur higher 

costs.  Nevertheless, by buying numerous and/or large pipes and 

delivering large volumes of traffic, the cloud service providers can 

obtain significant discounts for data transport.   Savings in compu-

tational and networking resources can in turn be passed on to 

creators of cloud service applications, owned and operated by the 

cloud service provider or by third parties. 

One might conclude that economies of scale favor mega-data 

centers, but it is not that simple.  By analogy, large firms such as 

Walmart, can expect favorable terms primarily because they are 

large.  Walmart can expect the same favorable term no matter how 

they configure their POPs (stores).  Economies of scale depend on 

total sales, not sales per POP.  In general, economies of scale de-

pend on the size of the market, not mega vs. micro.  

Large data centers are analogous to large conferences.  A small 

(low budget) workshop can be held in a spare room in many uni-

versities, but costs escalate rapidly for larger meetings that require 

hotels and convention centers.  There are thousands of places 

where the current infrastructure can accommodate a workshop or 
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two, but there is no place where the current infrastructure could 

handle the Olympics without a significant capital investment.  

Meetings encounter diseconomies of scale when they outgrow the 

capabilities of off-the-shelf venues.   

So too, costs escalate for large mega-data centers.  For example, if 

a mega-data center consumes 20MW of power at peak from a 

given power grid, that grid may be unable or unwilling to sell 

another 20MW to the same data center operator.   In general, the 

infrastructure for a new mega data center (building, power, and 

networking) calls for building/lighting up significant new compo-

nents.   Yet, if the data centers are smaller (under the micro moel), 

there is increased opportunity to exploit the overbuild in what is 

already there in the current power grid and networking fabric.  

There are thousands of places where the current infrastructure 

could handle the load for a container sized data center, but there is 

no place where the current infrastructure can handle a thousand 

containers without a significant capital investment.  Data centers 

encounter various diseconomies of scale when they become so 

large that they require significant investment in infrastructure. 

It is risky and expensive to put all our eggs in one basket.  Paraph-

rasing Mark Twain (The Tragedy of Pudd'nhead Wilson), if all 

our eggs are in one basket, then we must watch that basket carful-

ly.  In the mega-data center this means a very high degree of re-

dundancy at many levels – for example in power delivery and 

provisioning [1].  For example, as we cannot afford to lose the en-

tire site owing to power failure or network access failure, the 

mega data center may incur large costs in batteries, generators, 

diesel fuel, and in protected networking designs (e.g., over provi-

sioned multiple 10 GE uplinks and/or SONET ring connectivity to 

the WAN). 

Many embarrassingly distributed applications could be designed 

at the application layer to survive an outage in a single location.  

Geo-diversity can be cheaper and more reliable than batteries and 

generators.  The more geo-diversity the better (at least up to a 

point); N+1 redundancy becomes more attractive for large N.  

Geo-diversity not only protects against short term risks (such as 

blackouts), but also longer term risks such as a supplier cornering 

a local market in some critical resource (network, power, etc.).  

Unfortunately, in practice, inefficiencies of monopoly pricing can 

dominate other considerations.   With small containerized data 

centers, it is more feasible to adapt and provision around such 

problems (or leverage the capability to do so in negotiations), if 

the need should arise. 

On the other hand, there are limits to geo-diversification.  In par-

ticular, it is much easier to manage a small set of reliable sites.  

There is little point to provisioning equipment in so many places 

that supply chain management and auditing become overwhelm-

ing problems.  It may be hard to run a distributed system without 

on site workforce with timely physical access to the machine 

rooms.  (Yet, new containerized designs have promise to dramati-

cally mitigate the need for timely physical access[1].) 

Though there has been some degree of reporting[1-14] on the 

nature of large and small data centers, much remains proprietary, 

and there has been little discussion or questioning of basic as-

sumptions and design choices.   In this paper, we take up this in-

quiry.   In Section 2, to understand the magnitude of the costs en-

tailed in mega-data center physical infrastructure, we compare 

their purpose built design with a gedanken alternative where the 

servers are distributed among order 1000 condominiums.  The re-

sults suggest smaller footprint data centers are well worth pur-

suing.  In Section 3, we consider networking issues and designs 

for mega and micro data centers, where the micro data centers are 

order 1K to 10K servers.  In Section 4, we ask whether there are 

large cloud service applications that are well suited to micro data 

center footprints, specifically examining solutions that can be 

realized in an “embarrassingly distributed” fashion, and look at 

email in some depth.  In Section 5, we contrast mega and micro 

data centers taking a more tempered view than in Section 2. We 

conclude in Section 6. 

2. Power and Diseconomies of Scale 
How do machine room costs scale with size?  In a recent blog,2 

we compared infrastructure costs for a large data center with a 

farm of 1125 condominiums and found the condos to be cheaper.  

Condos might be pushing the limits of credulity a bit but whenev-

er we see a crazy idea even within a factor of two of current prac-

tice, something is interesting, warranting further investigation. 

A new 13.5 mega-watt data center costs over $200M before the 

upwards of 50,000 servers that fill the data center are purchased.   

Even if the servers are built out of commodity parts, the data cen-

ters themselves are not.  The community is considering therefore 

moving to modular data centers. Indeed, Microsoft is deploying a 

modular design in Chicago[3].  Modular designs take some of the 

power and mechanical system design from an upfront investment 

with 15 year life to a design that comes with each module and is 

on a three year or less amortization cycle and this helps increase 

the speed of innovation.  

Modular data centers help but they still require central power, 

mechanical systems, and networking systems.  These systems re-

main expensive, non-commodity components.  How can we move 

the entire datacenter to commodity components?   Consider a rad-

ical alternative: rather than design and develop massive data cen-

ters with 15 year lifetimes, let’s incrementally purchase condos 

(just-in-time) and place a small number of systems in each.  Radi-

cal to be sure, but condos are a commodity and, if this mechanism 

really was cheaper, it would be a wake-up call to reexamine cur-

rent industry-wide costs and what’s driving them. 

See Table 2 for the back of the envelope comparison showing that 

the condos are cheaper in both capital and expense.  Both configu-

rations are designed for 54K servers and 13.5MWs.   The data 

center costs over $200M, considerably more than 1125 condos at 

$100K each.  As for expense, the data center can expect favorable 

terms for power (66% discount over standard power rates).  Deals 

this good are getting harder to negotiate but they still do exist.  

The condos don’t get the discount, and so they pay more for pow-

er: $10.6M/year >> $3.5M/year.  Even with the deal, the data 

center is behind because it isn’t worth $100M in capital to save 

$7M/year in expense.  But to avoid comparing capital with ex-

pense, we simplified the discussion by renting the condos for 

$8.1M/year, more than the power discount.  Thus, condos are not 

only cheaper in terms of capital, but also in terms of expense. 

In addition to saving capital and expense, condos offer the option 

to buy/sell just-in-time.  The power bill depends more on average 

usage than worst-case peak forecast. These options are valuable 

under a number of not-implausible scenarios: 

                                                                 

2http://perspectives.mvdirona.com/2008/04/06/DiseconomiesOfSc

ale.aspx  
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Table 2: Condos are cheaper than data center in both capital and expense. 

  Large Tier II+ Data Center Condo Farm (1125 Condos) 

Specs 

  

Servers 54k 54k (= 48 servers/condo × 1125 Condos) 

Power 

(Peak) 

13.5 MW (= 250 Watts/server × 

54k servers) 

13.5MW (= 250 Watts/server × 54k servers  = 12 KW/condo × 

1125 Condos) 

Capital Building over $200M $112.5M (= $100k/condo × 1125 Condos) 

Annual 

Expense 
Power 

$3.5M/year (= $0.03 per kw/h 

×24×365 hours/year ×13.5MW) 
$10.6M/year (= $0.09 per kw/h×24×365 hours/year × 13.5MW) 

Annual 

Income 

Rental 

Income 
None 

$8.1M/year (= $1000/condo/month × 12 months/year × 1125 

Condos − $200/condo/month condo fees. We conservatively as-

sume 80% occupancy) 

 

1. Long-Term demand is far from flat and certain; demand will 

probably increase, but anything could happen over 15 years. 

2. Short-Term demand is far from flat and certain; power usage 

depends on many factors including time of day, day of week, 

seasonality, economic booms and busts.  In all data centers 

we’ve looked into, average power consumption is well below 

worst-case peak forecast.  
How could condos compete or even approach the cost of a pur-

pose built facility built where land is cheap and power is cheaper?  

One factor is that condos are built in large numbers and are effec-

tively “commodity parts.”  Another factor is that most data centers 

are over-engineered.  They include redundancy such as uninter-

ruptable power supplies that the condo solution doesn’t include.  

The condo solution gets it’s redundancy via many micro-data cen-

ters and being able to endure failures across the fabric. When 

some of the non-redundantly powered micro-centers are down, the 

others carry the load.  N+1 redundancy is particularly attractive 

for embarrassingly distributed apps (Section 4). 

It is interesting to compare wholesale power with retail power.  

When we buy power in bulk for a data center, it is delivered by 

the utility in high voltage form. These high voltage sources (us-

ually in the 10 to 20 thousand volt range) need to be stepped down 

to lower working voltages which brings efficiency losses, distri-

buted throughout the data center which again brings energy losses, 

and eventually delivered to the critical load at the working voltage 

(240VAC is common in North America with some devices using 

120VAC). The power distribution system represents approximate-

ly 40% of total cost of the data center. Included in that number are 

the backup generators, step-down transformers, power distribution 

units, and Uninterruptable Power Supplies (UPS’s). Ignore the 

UPS and generators since we’re comparing non-redundant power, 

and two interesting factors jump out:  

1. Cost of the power distribution system ignoring power redun-

dancy is 10 to 20% of the cost of the data center. 

2. Power losses through distribution run 10 to 12% of the power 

brought into the center. 

It is somewhat ironic in that a single family dwelling gets two-

phase 120VAC (240VAC between the phases or 120VAC be-

tween either phase and ground) delivered directly to the home.  

All the power losses experienced through step down transformers 

(usually in the 92 to 96% efficiency range) and all the power lost 

through distribution (dependent on the size and length of the con-

ductor) is paid for by the power company.  But when we buy pow-

er in quantity, the power company delivers high voltage lines to 

the property and we need to pay for expensive step down trans-

formers as well as power distribution losses.  Ironically, if we buy 

less power, then the infrastructure comes for free, but if we buy 

more then we pay more. 

The explanation for these discrepancies may come down to mar-

ket segmentation.  Just as businesses pay more for telephone ser-

vice and travel, they also pay more for power.  An alternative 

explanation involves a scarce resource, capital budgets for new 

projects. Small requests for additional loads from the grid can 

often be granted without tapping into the scarce resource.  Large 

requests would be easier to grant if they could be unbundled into 

smaller requests, and so the loads could be distributed to wherever 

there happens to be spare capacity.  Unbundling requires flexibili-

ty in many places including the applications layer (embarrassingly 

distributed apps), as well as networking. 

3. Networking 
In addition to power, networking issues also need to be considered 

when choosing between mega data centers (DCs) and an alter-

native which we have been calling the micro model: 

 Mega model:  large DCs (e.g., 100,000 – 1,000,000 servers). 

 Micro model: small DCs (e.g., 1000 – 10,000 servers). 

The mega model is typical of the networks of some of today’s 

large cloud service providers, and is assumed to be engineered to 

have the potential to support a plethora of services and business 

models (internal as well as hosted computations and services, 

cross service communication, remote storage, search, instant mes-

saging, etc.) These applications need not be geo-diverse, and in 

practice many of today’s applications still are not.    Thus, the re-

liability of the application depends on the reliability of the mega-

data center.   In the micro model, we consider applications engi-

neered for N+1 redundancy at micro data center level, which then 

(if large server pools are required) must be geo-diverse.    In both 

models, we must support on-net traffic between data centers, and 

off-net traffic to the Internet.   We focus the discussion here on 

off-net traffic; considerations of on-net traffic lead to similar con-

clusions.  While geo-diversity can be difficult to achieve – espe-
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cially for legacy applications – geo-diversity has advantages, and 

the trend is increasingly for geo-diverse services.   For embarras-

singly distributed services (Section 4), geo-diversity is relatively 

straightforward.     

Under the mega model, a natural and economical design has the 

cloud service provider creating or leasing facilities for a dedicated 

global backbone or Wide Area Network (WAN).   Off-net flows 

traverse: (1) mega data center to WAN via metro (or regional) 

links, (2) WAN to peering sites near the end points of flows, (3) 

ISPs and enterprises peered to the WAN.  The rationale is as fol-

lows.  Large cloud service providers enjoy a wide set of buy/build 

options across networking layers 1, 2, 3 in creating wide area and 

metro networks.3  Via a global WAN, the cloud service provider 

can “cold potato” route to a very large set of peers, and thereby 

reap several benefits: (1) settlement free peering with a very large 

number of tier 2 ISPs (ISPs who must typically buy transit from 

larger ISPs), (2) lower cost settlement with tier 1 ISPs as high 

traffic volumes are delivered near the destination, and (3) (impor-

tantly) a high degree of unilateral control of performance and re-

liability of transport.   In the metro segment, there will be typical-

ly some form of overbuild (SONET ring or, more likely, multiple 

diverse 10GE links from the data center) of capacity to protect 

against site loss.  A strong SLA can be supported for different ser-

vices, as the cloud service provider has control end to end, sup-

porting, for example, performance assurances for database sync, 

and for virtualized network and computational services sold to 

customers who write third party applications against the platform. 

In the micro model, a vastly simpler and less expensive design is 

natural and economical, and is typical of many content distribu-

tion networks today.  First, as the computational resources are 

smaller with the micro data center, the networking resources are 

accordingly smaller and simpler, with commodity realizations 

possible.  To provide a few 10 GE uplinks for the support of 1K to 

10K servers commodity switches and routers can be used, with 

costs now in the $10K range[18].  In the mega data center, these 

network elements are needed, as well as much larger routers in the 

tree of traffic aggregation, with costs closer to $1M.   In the micro 

model, the cloud service provider buys links from micro data 

center to network services providers, and the Internet is used for 

transit.  Off-net traffic traverses metro links from data center to 

the network service providers, which deliver the traffic to the end 

users on the Internet, typically across multiple autonomous sys-

tems.  As we assume N+1 redundancy at micro data center level, 

there is little or no need for network access redundancy, which 

(coupled with volume discounts that come from buying many tail 

circuits, and with the huge array of options for site selection for 

micro data centers) in practice should easily compensate for the 

increase in fiber miles needed to reach a larger number of data 

centers.   In buying transit from network providers, all the costs of 

the mega model (metro, wide area, peering) are bundled into the 

access link costs.  Though wide area networking margins are con-

sidered thin and are becoming thinner, the cost of creating dedi-

cated capacity (mega model) rather than using already created 

shared capacity is still higher.  That said, in the micro model, the 

cloud service provider has ceded control of quality to its Internet 

access providers, and so cannot support (or even fully monitor) 

SLAs on flows that cross out multiple provider networks, as the 

bulk of the traffic will do.  However, by artfully exploiting the 

                                                                 

3 While less true in the metro area, a user of large wide area net-

working resources can fold in metro resources into the solution. 

diversity in choice of network providers and using performance 

sensitive global load balancing techniques, performance may not 

appreciably suffer.  Moreover, by exploiting geo-diversity in de-

sign, there may be attendant gains in reducing latency. 

4. Applications 
By “embarrassingly distributed” applications, we mean applica-

tions whose implementations do not require intense communica-

tions within large server pools.  Examples include applications:  

 Currently  deployed with a distributed implementation: voice 

mail, telephony (Skype), P2P file sharing (Napster), multi-

cast, eBay, online games (Xbox Live),4 grid computing; 

 Obvious candidates for a distributed implementation: spam 

filtering & email (Hotmail), backup, grep (simple but com-

mon forms of searching through a large corpus) 

 Less obvious candidates: map reduce computations (in the 

most general case), sort (in the most general case), social 

networking (Facebook). 

For some applications, geo-diversity not only improves cost, 

scale, reliability, but also effectiveness.  Consider spam filtering, 

which is analogous to call gapping in telephony[17].  Blocking 

unwanted/unsuccessful traffic near the source saves transport 

costs.  When telephone switching systems are confronted with 

more calls than they can complete (because of a natural disaster 

such as an earthquake at the destination or for some other reason 

such as “American Idol” or a denial of service attack), call gap-

ping blocks the traffic in central offices, points of presence for 

relatively small groups of customers (approximately 10,000), 

which are likely to be near the sources of the unsuccessful traffic.    

Spam filtering should be similar.  Blocking spam and other un-

wanted traffic mechanisms near the source is technically feasible 

and efficient[14] and saves transport.  Accordingly, many clean-

sing applications, such as spam assassin[15], can operate on both 

mail servers and on end user email applications. 

Email is also analogous to voice mail.  Voice mail has been de-

ployed both in the core and at the edge.  Customers can buy an 

answering machine from (for example) Staples and run the service 

in their home at the edge, or they can sign up with (for example) 

Verizon for voice mail and the telephone company will run the 

service for them in the core.  Edge solutions tend to be cheaper. 

Phone companies charge a monthly recurring charge for the ser-

vice that is comparable to the one-time charge for the hardware to 

run the service at home.  Moving the voice mail application to the 

edge typically pays for itself in a couple of months.  Similar 

comments hold for many embarrassingly distributed applications.   

Data center machine rooms are expensive, as seen in Section 2.  

Monthly rents are comparable to hardware replacement costs.   

Let us now consider the email application in more depth. 

4.1 Email on the Edge 
Microsoft’s Windows Live Hotmail has a large and geo-diverse 

user base, and provides an illustrative example.  Traffic volumes 

are large and volatile (8x more traffic on some days than others), 

largely because of spam.  Hotmail blocks 3.4B spam messages per 

day.  Spam (unwanted) to ham (wanted) ratios rarely fall below 

70% and can spike over 94%, especially after a virus outbreak.  

                                                                 

4  Online games actually use a hybrid solution.  During the game, 

most of the computation is performed at the edge on the players’ 

computers, but there is a physical cloud for some tasks such as 

match making and out-of-bandwidth signaling. 
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Adversaries use viruses to acquire zombies (bot farms).  A few 

days after an outbreak, zombies are sold to spammers, and email 

traffic peaks soon thereafter. 

Hotmail can be generally decomposed into four activities, all of 

which are embarrassingly distributed: 

1) Incoming Email Anti-malware and Routing 

2) Email Storage Management 

3) Users and Administrator Service 

4) Outgoing Email Service 

Incoming Email Anti-malware and Routing: Mail is delivered 

to the service via SMTP.  Load balancers distribute incoming con-

nections to available servers.   Edge blocks are applied to reject 

unwanted connections via IP black lists and anti-spam/virus me-

chanisms.  Additional filters are applied after a connection is es-

tablished to address Directory Harvest Attacks (en.wiki-

pedia.org/wiki/E-mail_address_harvesting) and open relays (en.-

wikipedia.org/wiki/Open_mail_relay). 

Email Storage Management: The store has to meet requirements 

on reliability, availability, throughput and latency.  It is common 

practice to build the store on top of a file system (although pro-

priety blob storage solutions are also popular).  Header informa-

tion and other metadata are maintained in a structured store for 

speed. 

Users and Administrator Service: Requests come into the ser-

vice from users in a variety of protocols including POP, IMAP, 

DAV, Deltasync, HTTP (web front ends). These requests are typi-

cally sent to pools of protocol servers.  The protocol servers make 

authentication requests for each user to a separate authentication 

service: looking up the user’s email address and finding the ap-

propriate email storage server for that user, making internal trans-

fer requests from the storage server, and returning the results in 

the appropriate format. Administrative requests are handled in the 

same way although with different permission and scope from nor-

mal users. 

Outgoing Email Service: The outgoing email service accepts e-

mail send requests from authenticated users. These messages are 

typically run through anti-malware facilities to avoid damaging 

the overall service reputation by distributing malware. And then 

the messages are routed as appropriate internally or externally. 

4.2 Implementing Email near the Edge 
Although Windows Live Hotmail and other email services are 

currently implemented as central in-the-core services with rela-

tively few (10) data centers, more POPs could improve response 

time and service quality by distributing work geographically.  

Some mail services (such as Yahoo) migrate mailboxes as users 

move (or travel).  Reliability can be achieved by trickling data 

from a primary server to a secondary server in another location, 

with small impact on overall cost.  Order 100 POPs are sufficient 

to address latencies due to the speed of light, though more POPs 

enhance features such as blocking unwanted traffic near the 

source.  

Microsoft Exchange Hosted Services[13] provides an example in 

the marketplace of hosted email anti-malware services. 

5. Mega vs. Micro 
Applications in the data center fall roughly into two classes: large 

analysis and service.  Many large analysis applications are best 

run centrally in mega data centers.  Mega data centers may also 

offer advantages in tax savings, site location and workforce cen-

tralization.  Interactive applications are best run near users. Inter-

active and embarrassingly distributed applications can be deli-

vered with better QoS (e.g., smaller TCP round trip times, and 

greater independence of physical failure modes) via micro data 

centers.  It can also be cheaper to deliver such services via micro 

data centers. 

With capital investment for a mega data center that run $200M to 

$500M before adding servers, the last point is important.  Major 

components of the mega data center infrastructure are not com-

modity parts; e.g., 115 KVA to 13.2 KVA and 13.2 KVA to 408 

VA transformers.   Moreover, mega data centers are constructed 

with high levels of redundancy within and across layers[1].  In 

particular, power redundancy (UPS, resilient generator designs, 

seas of batteries, backup cooling facilities, and storage for 100K 

gallons of diesel) consumes at least 20% of the total infrastructure 

spend.  In contrast, micro data center designs use commodity 

parts.  With resilience in the network of micro data centers, there 

is little or no spend on generators, diesel, redundant cooling; the 

cost of many levels of redundancy disappears.  As a result, the 

unit capital cost of resources in the mega data center exceeds that 

of the micro data center. To capture this in a simple model, we 

assume that resources have unit cost in the micro data center, but 

the same resources cost 𝑈 in the mega data center, where 𝑈 ≥ 1. 

While varying by application, networking and power consumption 

needs scale with the workload.  If we split workload from a single 

large center into 𝐾 smaller centers, then some efficiency may be 

lost.   A compensatory measure then is to use load balancing (e.g., 

via DNS or HTTP level resolution and redirection).  For example, 

an overloaded micro data center might redirect load to another 

micro data center (chosen in a random, or load and proximity 

sensitive manner).   This can reclaim most of the efficiencies lost.   

New traffic is introduced between micro data centers can be miti-

gated by measures discussed earlier: edge filtering,  application or 

network layer DDoS scrubbing (see e.g. [22]),  time shifting of 

traffic needed to assure resilience and optimization of transport 

costs between fixed sites (e.g., locating near fiber hotels in metro 

areas).   To first order, as capital costs of the data center dominate 

operational costs of networking and power[1], and taking into ac-

count available measures, we do not see the uplift in networking 

costs from internal transfers as appreciable. 

To get some understanding of the worst case for networking and 

power capital costs, let’s consider a simple model for the case of 

no cross data center load balancing.  A parsimonious model of 

Internet workload[19][20], ideally suited to scenarios such as data 

centers that multiplex large numbers of flows, models workload 

as 𝑚𝑡 +  𝑎 𝑚𝑡  𝑤𝑡  where 𝑚𝑡  is the time varying mean traffic 

rate, 𝑤𝑡  is a stationary stochastic process with zero mean and unit 

variance (e.g., Fractional Gaussian Noise), and the single parame-

ter 𝑎 captures the “peakedness” or bustiness of the load.  For ex-

ample, this model can capture the phenomenon seen for an email 

provider in Figure 1. (Peakedness is sensitive to large workload 

spikes that are not filtered out[19] – though well run services must 

ultimately manage these by graceful degradation and admission 

control[21], with some workload turned away (spikes crossing the 

capacity line in Figure 1.))  If the workload is decomposed into 𝐾 

individual streams, with constant parameters 𝑚𝑖 , 𝑎𝑖 , and with 

independent realizations of a common Gaussian process, the mod-

el continues to hold with 𝑚 =   𝑚𝑖
𝐾
1 , and peakedness 𝑎 =

1/𝑚 𝑚𝑖
𝐾
1 𝑎𝑖 , the weighted sum.    

A service provider needs to design networking and power to ac-

commodate most peaks.  Assuming uniformity, independent 
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Gaussian behavior, and focusing on loads 𝑚 during busy hours, 

the resource required for the mega center can be estimated as 

𝑚 + 𝑛 𝑎𝑚, where the new parameter 𝑛 captures the SLA.  (Set-

ting 𝑛 = 2 corresponds to planning enough capacity to accommo-

date workload up to the 97.5th percentile.)  As the unit cost of 

resources in the mega data centers is 𝑈, the total resource cost is 

then 𝑈[𝑚 + 𝑛 𝑎𝑚].  Similarly, the total resource cost for the 

micro data center is 𝐾[m/K+𝑛 𝑎𝑚/𝐾].  Thus, the spend to sup-

port a mega data center beyond that needed to support 𝐾 micro 

data centers without load balancing comes to 𝑚 𝑈 − 1 −

𝑛 𝑚𝑎  𝐾 − 𝑈 .  For large resource demands 𝑚, the result 

hinges on the unit cost penalty 𝑈 for the mega data center.   If 𝑈 is 

even slightly larger than 1, then for large 𝑚 the first term domi-

nates and mega data center costs more. If unit costs are identical 

(𝑈 = 1), then in the case of no load balancing, the micro data 

centers cost more -- though the increment grows with  𝑚 and so 

is a vanishing fraction of the total cost, which grows with 𝑚.  
Specifically, the increment grows with a workload peakedness 

term  𝑎, a fragmentation term  𝐾 − 1, and a term 𝑛 reflecting the 

strength of the SLA.   

 

Figure 1.  Processed (upper curve) and blocked (lower curve) 

traffic to an email provider (under spam attack). 

6. Conclusions 
Cloud service providers are on a path to supporting up to a million 

servers.   Should we build a few mega datacenters under the mega 

model, or lots of smaller datacenters under the micro model?  

When applicable, the micro model is simpler and less expensive, 

both in terms of power (section 2) and networking (section 3); 

geo-diversity and N+1 redundancy eliminate complicated and 

expensive protection mechanisms: batteries, generators, and re-

dundant access and transit networks.  The micro model is not 

appropriate for all applications, but it is especially attractive for 

embarrassingly distributed applications, as well as applications 

that use small pools of servers (less than 10,000).  Section 3 men-

tioned a number of examples, and described email in some detail.  

For spam filtering, geo-diversity not only simplifies the design, 

but the extra points of presence can block unwanted traffic near 

the source, a feature that would not have been possible under the 

mega model. Putting it all together, the micro model offers a de-

sign point with attractive performance, reliability, scale and cost.  

Given how much the industry is currently investing in the mega 

model, the industry would do well to consider the micro alterna-

tive. 
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Abstract

Data centers avoid IP Multicast because of a se-
ries of problems with the technology. We propose
Dr. Multicast (the MCMD), a system that maps
traditional IPMC operations to either use a new
point-to-point UDP multisend operation, or to a
traditional IPMC address. The MCMD is de-
signed to optimize resource allocations, while si-
multaneously respecting an administrator-specified
acceptable-use policy. We argue that with the re-
sulting range of options, IPMC no longer represents
a threat and could therefore be used much more
widely.

1 Introduction

As data centers scale up, IP multicast (IPMC) [8]
has an obvious appeal. Publish-subscribe and data
distribution layers [6, 7] generate multicast distri-
bution patterns; IPMC permits each message to be
sent using a single I/O operation, reducing latency
both for senders and receivers (especially, for the
last receiver in a large group). Clustered application
servers [1, 4, 3] need to replicate state updates and
heartbeats between server instances. Distributed
caching infrastructures [2, 5] need to update cached
information. For these and other uses, IPMC seems
like a natural match.

Unfortunately, IPMC has earned a reputation as
a poor citizen. Routers must maintain routing state
and perform a costly per-group translation[11, 9].
Many NICs can only handle a few IPMC addresses;
costs soar if too many are used. Multicast flow con-
trol is also a black art. When things go awry, a mul-
ticast storm can occur, disrupting the whole data
center. Perhaps most importantly, management of
multicast use is practically unsupported.

Our paper introduces Dr. Multicast (the
MCMD), a technology that permits data center
operators to enable IPMC while maintaining tight

∗This work was supported by grants from AFRL, AFOSR,

NSF, Cisco and Intel.

control on its use. Applications are coded against
the standard IPMC socket interface, but IPMC
system calls are intercepted and mapped into one
of two cases:

• A true IPMC address is allocated to the group.

• Communication to the group is performed us-
ing point-to-point UDP messages to individual
receivers, using a new multi-send system call.

The MCMD tracks group membership, using a
gossip protocol. It translates each send operation
on a multicast group into one or more send opera-
tions, optimized for system objectives. Finally, to
implement this optimization policy, it instantiates
in a fault-tolerant fashion a service that computes
the best allocation of IPMC addresses to groups
(or to overlapping sets of groups), adapting as use
changes over time.

Users benefit in several ways:

• Policy: Administrators can centrally impose
traffic policies within the data center, such as
limiting the use of IPMC to certain machines,
placing a cap on the number of IPMC groups
in the system or eliminating IPMC entirely.

• Performance: The MCMD approximates the
performance of IPMC, using it directly where
possible. When a multicast request must be
translated into UDP sends, the multi-send sys-
tem call reduces overheads.

• Transparency and Ease-of-Use: Applications
express their intended communication pattern
using standard IPMC interfaces, rather than
using hand-coded implementations of what is
really an administrative policy.

• Robustness: The MCMD is implemented as a
distributed, fault-tolerant service.

We provide and evaluate effective heuristics for the
optimization problem of allocating the limited num-
ber of IPMC addresses, although brevity limits us
to a very terse review of the framework, the underly-
ing (NP -complete) optimization question, and the
models used in the evaluation.
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Figure 1: Receiver packet miss rate vs. number of IPMC

groups joined

2 IPMC in the Data Center

Modern data centers often have policies legislating
against the use of IPMC, despite the fact that multi-
cast is a natural expression of a common data com-
munication pattern seen in a wide range of applica-
tions. This reflects a number of pragmatic consid-
erations. First, IPMC is perceived as a potentially
costly technology in terms of performance impact
on the routing and NIC hardware. Second, appli-
cations using IPMC are famously unstable, running
smoothly in some settings and yet, as scale is in-
creased, potentially collapsing into chaotic multi-
cast storms that disrupt even non-IPMC users.

The hardware issue relates to imperfect filtering.
A common scheme used to map IP group addresses
to Ethernet group addresses involves placing the
low-order 23 bits of the IP address into the low-
order 23 bits of the Ethernet address [8]. Since there
are 28 significant bits in the IP address, more than
one IP address can map to an Ethernet address.
The NIC maintains the set of Ethernet mappings
for joined groups and forwards packets to the ker-
nel only if the destination group maps to one of
those Ethernet addresses. As a result, with large
numbers of groups, the NIC may accept undesired
packets, which the kernel must discard.

Figure 1 illustrates the issue. In this experiment,
a multicast transmitter transmits on 2k multicast
groups, whereas the receiver listens to k multicast
groups. We varied the number of multicast groups k

and measured the CPU consumption as well as the
packet loss at the receiver. The transmitter trans-
mits at a constant rate of 15,000 packets/sec, with
a packet size of 8,000 bytes spread across all the
groups. The receiver thus expects to receive half

of that, i.e. 7,500 packets/sec. The receiver and
transmitter have 1Gbps NICs and are connected
by a switch with IP routing capabilities. The ex-
periments were conducted on a pair of single core
IntelR© Xeon

TM

2.6GHz machines. Figure 1 shows
that the critical threshold that the particular NIC
can handle is roughly 100 IPMC groups, after which
throughput begins to fall off.

The issue isn’t confined to the NIC. Performance
of modern 10Gbps switches was evaluated in a re-
cent review [10] which found that their IGMPv3
group capacity ranged between as little as 70 and
1,500. Less than half of the switches tested were
able to support 500 multicast groups under stress
without flooding receivers with all multicast traffic.

The MCMD addresses these problems in two
ways. First, by letting the operator limit the num-
ber of IPMC addresses in use, the system ensures
that whatever the limits in the data center may
be, they will not be exceeded. Second, by optimiz-
ing to use IPMC addresses as efficiently as possi-
ble, the MCMD arranges that the IPMC addresses
actually used will be valuable ones – large groups
that receive high traffic. As seen below, this is done
not just by optimizing across the groups as given,
but also by discovering ways to aggregate overlap-
ping groups into structures within which IPMC ad-
dresses are shared by multiple groups, permitting
even greater efficiencies.

The perception that IPMC is an unstable tech-
nology is harder to demonstrate in simple experi-
ments: as noted earlier, many applications are per-
fectly stable under most patterns of load and scale,
yet capable of being extraordinarily disruptive. The
story often runs something like this. An application
uses IPMC to send to large numbers of receivers at a
substantial data rate. Some phenomenon now trig-
gers loss. The receivers detect the loss and solicit
retransmissions, but this provokes a further load
surge, exacerbating the original problem. A mul-
ticast storm ensues, saturating the network with
redundant retransmission requests and duplicative
multicasts. With MCMD the operator can safely
deploy such an application: if it works well, it will
be permitted to use IPMC; if it becomes problem-
atic, it can be mapped to UDP merely by chang-
ing the acceptable use policy. More broadly, the
MCMD encourages developers to express intent in
a higher-level form, rather than hand-coding what
is essentially an administrative policy.

3 Design

The basic operation of MCMD is simple. It trans-
lates an application-level multicast address used by
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Figure 2: Overview of the MCMD architecture

an application to a set of unicast addresses and
network-level multicast addresses. MCMD has two
components (see figure 2):

• A library module responsible for the mecha-
nism of translation. It intercepts outgoing mul-
ticast messages and instead sends them to a set
of unicast and multicast destinations.

• A mapping module responsible for the policy
of translation. It determines the mapping from
each application-level address and a set of uni-
cast and network-level multicast addresses.

3.1 Library Module

The MCMD library module exports a <sockets.h>

library to applications, with interfaces identical to
the standard POSIX version. By overloading the
relevant socket operations, MCMD can intercept
join, leave and send operations. For example:

• setsockopt() is overloaded so that an invo-
cation with the IP ADD MEMBERSHIP or
IP DROP MEMBERSHIP option as a param-
eter results in a ‘join’ message being sent to
the mapping module. In this case, the stan-
dard behavior of setsockopt – generating an
IGMP message – is suppressed.

• sendto() is overloaded so that a send to a class
D group address is intercepted and converted
to multiple sends to a set of addresses from the
kernel.

The library module interacts with the mapping
module via a UNIX socket. It pulls the translations
for each application-level group from the mapping

Figure 3: Two under-the-hood mappings in MCMD, a di-

rect IPMC mapping on the left and point-to-point mapping

on the right.

module. Simultaneously, it pushes information and
statistics about grouping and traffic patterns used
by the application to the local mapping module.

3.2 Mapping Module

The mapping module plays two important roles:

• It acts as a Group Membership Service
(GMS), maintaining the membership set of
each application-level group in the system.

• It allocates a limited set of IPMC addresses
to different sets of machines in the data center
and orchestrates the IGMP joins and leaves re-
quired to maintain these IPMC groups within
the network.

The mapping module uses a gossip-based control
plane using techniques described in [13]. The gossip
control plane is extremely resilient to failures and
includes a decentralized failure detector that can
be used to locate and eject faulty, i.e. irresponsive,
machines. It imposes a stable and constant over-
head on the system and has no central bottleneck,
irrespective of the number of nodes.

The gossip-based control plane essentially repli-
cates mapping and grouping information slowly and
continuously throughout the system. As a result,
the mapping module on any single node has a global
view of the system and can immediately resolve an
application-level address to a set of unicast and mul-
ticast addresses without any extra communication.
The size of this global view is not prohibitive; for
example, we can store membership and mapping in-
formation for a 1000-node data center within a few
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MB of memory. For now, we’re targetting systems
with a low enough rate of joins, leaves and failures
per second to allow for global replication of control
information. In the future, we’ll replace the global
replication scheme with a more focused one to elim-
inate this restriction.

Knowledge of global group membership is suffi-
cient for the mapping module at each node to trans-
late application-level group addresses into network-
level unicast addresses. To fulfill the second func-
tion of allocating IPMC addresses in the system, an
instance of the specific mapping module running on
a particular node in the system acts as a leader. It
aggregates information from other mapping mod-
ules (via the gossip control plane) and calculates
appropriate allocations of IPMC addresses to man-
date within the data center. The leader can be cho-
sen according to different strategies – one simple
expedient is to query the gossip layer for the old-
est node in the system. The failure of the leader is
automatically detected by the gossip layer’s inbuilt
failure detector, which also naturally updates the
pointer to the oldest node.

3.2.1 Gossip Control Plane

We first describe an implementation of the mapping
module using only the gossip-based control plane.
However, the Achilles heel of gossip at large system
sizes is latency – the time it takes for an update
to propagate to every node in the system. Conse-
quently, we then describe approaches to add extra
control traffic for certain kinds of critical updates
– in particular, IPMC mappings and group joins –
that need to be distributed through the system at
low latencies.

Gossip-based Failure Detector: The
MCMD control plane is a simple and powerful
gossip-based failure detector identical to the one
described by van Renesse [13]. Each node main-
tains its own version of a global table, mapping
every node in the data center to a timestamp or
heartbeat value. Every T milliseconds, a node up-
dates its own heartbeat in the map to its current
local time, randomly selects another node and rec-
onciles maps with it. The reconciliation function
is extremely simple – for each entry, the new map
contains the highest timestamp from the entries in
the two old maps. As a result, the heartbeat times-
tamps inserted by nodes into their own local maps
propagate through the system via gossip exchanges
between pairs of nodes.

When a node notices that the timestamp value for
some other node in its map is older than T1 seconds,
it flags that node as ‘dead’. It does not immediately

delete the entry, but instead maintains it in a dead
state for T2 more seconds. This is to prevent the
case where a deleted entry is reintroduced into its
map by some other node. After T2 seconds have
elapsed, the entry is truly deleted.

The comparison of maps between two gossiping
nodes is highly optimized. The initiating node
sends the other node a set of hash values for differ-
ent portions of the map, where portions are them-
selves determined by hashing entries into different
buckets. If the receiving node notices that the hash
for a portion differs, it sends back its own version of
that portion. This simple interchange is sufficient
to ensure that all maps across the system are kept
loosely consistent with each other. An optional step
to the exchange involves the initiating node trans-
mitting its own version back to the receiving node,
if it has entries in its map that are more recent than
the latter’s.

Gossip-based Communication: Thus far, we
have described a decentralized gossip-based failure
detector. Significantly, such a failure detector can
be used as a general purpose gossip communication
layer. Nodes can insert arbitrary state into their
entries to gossip about, not just heartbeat times-
tamps. For example, a node could insert the av-
erage CPU load or the amount of disk space avail-
able; eventually this information propagates to all
other nodes in the system. The reconciliation of
entries during gossip exchanges is still done based
on which entry has the highest heartbeat, since that
determines the staleness of all the other information
included in that entry.

Using a gossip-based failure detector as a control
communication layer has many benefits. It provides
extreme resilience and robustness for control traffic,
eliminating any single points of failure. It provides
extremely clean semantics for data consistency –
a node can write only to its own entry, eliminat-
ing any chance of concurrent conflicting writes. In
addition, a node’s entry is deleted throughout the
system if the node fails, allowing for fate sharing
between a node and the information it inserts into
the system.

Group Membership Service: The mapping
module uses the gossip layer to maintain group
membership information for different application-
level groups in the system. Each node maintains
in its gossip entry – along with its heartbeat times-
tamp – the set of groups it belongs to, updating this
whenever the library module intercepts a join or a
leave. A simple scan of the map is sufficient to gen-
erate an alternative representation of the member-
ship information, mapping each group in the system
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to all the nodes that belong to it. If a node fails, its
entry is removed from the gossip map; as a result,
a subsequent scan of the map generates a groups-
to-nodes table that excludes the node from all the
groups it belonged to.

Mapping Module Leader: As mentioned pre-
viously, the gossip layer informs the mapping mod-
ule of the identity of the oldest node in the system,
which is then elected as a leader and allocates IPMC
addresses. To distribute these allocations back into
the system, the leader can just update its own en-
try in the gossip map with the extra IPMC infor-
mation. When a receiver is informed of a relevant
new mapping, it issues the appropriate IGMP mes-
sages required to join or leave the IPMC group as
mandated by the mapping module.

A “pure” gossip protocol can have large propa-
gation delays, resulting in undesirable effects such
as senders transmitting to IPMC groups before re-
ceivers can join them. To mitigate these latency
effects, the leader periodically broadcasts mappings
at a fixed, low rate to the entire data center. The
rate of these broadcasts is tunable; we expect typ-
ical values to be a few packets every second. The
broadcast acts purely as a latency optimization over
the gossip layer; if a broadcast message is lost at a
node, the mapping is eventually delivered to it via
gossip.

Latency Optimization of Joins: We are also
interested in minimizing the latency of a join to an
application-level multicast group; i.e., after a node
issues a join request to a group, how much time
elapses before it receives data from all the senders
to that group? While the gossip layer will eventu-
ally update senders of the new membership of the
group, its latency may be too high to support appli-
cations that need fast membership operations. The
latency of leave operations is less critical, since a
receiver that has left a group can filter out mes-
sages arriving in that group from senders who have
stale membership information until the gossip layer
propagates the change.

In MCMD, we explore two options to speed up
joins. The first method is to have receivers broad-
cast joins to the entire data center. For most data
center settings, this is a viable option since the rate
of joins in the system is typically quite low. This ap-
proach is drawn on figure 2. The second method is
meant for handling higher churn; it involves explic-
itly tracking the set of senders for each group via the
gossip layer. Since each node in the system knows
the set of senders for every group, a receiver joining
a group can directly send the join using multiple
unicasts to the senders of that group. The second

option incurs more space and communication over-
head in the gossip layer but is more scalable in terms
of churn and system size.

Switching between these two options can be done
by a human administrator or automatically by a
designated node, such as the mapping module, sim-
ply by observing the rate of membership updates
in the system via the gossip layer. Once again, the
broadcasts or direct unicasts do not have to be reli-
able, since the gossip layer will eventually propagate
joins throughout the system.

3.3 Kernel Multi-send System Call

Sending a single packet to a physical IPMC group
is cheap since the one-to-many multiplexing is done
on a lower level by routing or switching hardware
in the network. However, when IPMC resources are
exhausted, the group-address mapping in MCMD
will map a logical IPMC group to a set of unicast
addresses corresponding to its members. Thus a
single sendto()-call at the interface would produce
a series of sends at the library and kernel level of
identical packets to a number of physical addresses.
We modified the kernel to help alleviate the over-
head caused by context-switching during the list of
sends. We implemented a multi-send system call on
the Linux 2.6.24 kernel with a sendto()-like inter-
face that sends a message to multiple destinations.

4 Optimizing Resource Use

Beyond making IPMC controllable and hence safe,
the MCMD incorporates a further innovation. We
noted that our goal is to optimize the limited use of
IPMC addresses. Such optimization problems are
often hard, and indeed the optimization problem
that arises here we have proven to be NP -complete
(details omitted for brevity). Particularly difficult
is the problem of mapping multiple application-level
groups to the same IPMC address: doing so shares
the address across a potentially large set of groups,
which is a good thing, but finding the optimal pat-
tern for sharing the addresses is hard.

A topic is a logical multicast group. Our algo-
rithm can be summarized as follows.

• Find and merge all identically overlapping top-
ics into groups, aggregating the traffic reports.

• Sort groups in descending order by the product
of the reported traffic rate and topic size.

• For each group G, assign an IPMC address to
topic G, unless the global or user address quota
for ≥ 3 members have been exceeded.
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• Enlist all remaining users in G for point-to-
point communication over unicast.

Thus a large topic with high traffic is more likely
to be allocated a dedicated IPMC address. Other
groups might communicate over both IPMC and
point-to-point unicast for members that have ex-
ceeded their NIC IPMC capacity, and yet others
might perform multicast over point-to-point unicast
entirely.

5 Related Work

Brevity prevents a detailed comparison of our work
with previous work of [14, 15]; key differences stem
from our narrow focus on data center settings. Our
mathematical framework extends that of [12], but
instead of inexact channelization we investigate zero
filtering.

6 Conclusion

Many major data center operators legislate against
the use of IP multicast: the technology is perceived
as disruptive and insecure. Yet IPMC offers very at-
tractive performance and scalability benefits. Our
paper proposes Dr. Multicast (the MCMD), a rem-
edy to this conundrum. By permitting operators to
define an acceptable use policy (and to modify it at
runtime if needed), the MCMD permits active man-
agement of multicast use. Moreover, by introducing
a novel scheme for sharing scarce IPMC addresses
among logical groups, the MCMD reduces the num-
ber of IPMC addresses needed sharply, and ensures
that the technology is only used in situations where
it offers significant benefits.
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ABSTRACT

The advent of static wireless mesh networks (WMNs) has
largely shifted the design goals of wireless routing proto-
cols from maintaining connectivity among routers to provid-
ing high throughput. The change of design goals has led to
the creation of many “exotic” optimization techniques such
as opportunistic routing and network coding, that promise a
dramatic increase in overall network throughput. These “ex-
otic” techniques have also moved many mechanisms such as
reliability and rate control, that used to be below or above
the routing layer in traditional protocols, to the routing layer.

In this paper, we first review the above evolution of rout-
ing protocol design and show that the consolidation of mech-
anisms from multiple layers into the routing layer poses new
challenges to the methodology for evaluating and compar-
ing this new generation of routing protocols. We then dis-
cuss the diverse set of current practices in evaluating recently
proposed protocols and their strengths and weaknesses. Our
discussion suggests that there is an urgent need to carefully
rethink the implications of the new merged-layer routing pro-
tocol design and develop effective methodologies for mean-
ingful and fair comparison of these protocols.

Finally, we make several concrete suggestions on the de-
sired evaluation methodology. In particular, we show that
the traffic sending rate plays a fundamental role and should
be carefully controlled.

1. RENAISSANCE OF WIRELESS ROUTING PRO-
TOCOL DESIGN

The recent evolution of wireless networking from the ad
hoc networking era to the mesh networking era has ignited
a new Renaissance of routing protocol design for multihop
wireless networks.

In the ad hoc networking era, the primary challenge faced
by routing protocols (e.g., DSR [11], AODV [17]) was to
deal with frequent route breaks due to host mobility in a dy-
namic mobile environment. Accordingly, most research ef-
forts were focused on designing efficient route discovery/repair
schemes to discover or repair routes with minimum over-
head. The routing process itself was simple; once a route
from the source to a destination was known, each hop along
the route simply transmitted the packet to the next hop via
802.11 unicast. These protocols relied on 802.11 unicast
(with its built-in ACK-based local recovery scheme and ex-
ponential backoff) to deal with packet loss due to channel
∗We thank the reviewers for their insightful comments. This work
was supported in part by NSF grant CNS-0626703.

errors or collisions.
The design goals of the ad hoc routing protocols also drove

their evaluation methodology. The comparison between dif-
ferent protocols was usually in terms of Packet Delivery Ra-
tio (PDR) and control overhead (e.g. [2, 5]). The offered
load, typically of some constant rate, was low so that the re-
sulting data traffic and control overhead do not exceed the
network capacity. The main parameter varied in the evalu-
ations was the pause time of the random waypoint mobility
model, which characterized how dynamic the environment
was. The focus of such a methodology was to offer a direct
comparison of various protocols’ ability to transfer data to
the destination under host mobility, while incurring low con-
trol overhead. Interestingly, often times the protocol com-
parisons boiled down to tradeoffs between PDR and control
overhead [2, 5].

Transition to WMNs changed these rules. In a WMN,
routers are static and hence route changes due to mobility
are not a concern anymore. The main performance metric
is now throughput, often times even at the cost of increased
control overhead.

The first major effort towards the new design goal was on
designing link-quality path metrics (e.g., ETX [4], ETT [6])
that replaced the commonly used shortest-path metric. The
protocols using these link-quality metrics still followed the
layering principle: the routing layer finds a good route, and
802.11 unicast is used to deliver packets hop by hop.

Opportunistic Routing. Seeking further throughput im-
provement, researchers looked into new, “exotic” techniques,
which largely abandoned the layering principle. The first
such technique was opportunistic routing as demonstrated in
the ExOR protocol [1]. Instead of having a decoupled MAC
and routing layer, ExOR explored an inherent property of
the wireless medium, its broadcast nature. Instead of first
determining the next hop and then sending the packet to it, it
broadcasts the packet so that all neighbors have the chance to
hear it; among those that received the packet, the node clos-
est to the destination forwards the packet. This also implies
that some coordination is required, so that the neighboring
nodes can agree on who should rebroadcast the packet next.
To reduce the coordination overhead, ExOR proposed send-
ing packets in batches.

Intra-flow network coding. The second “exotic” tech-
nique applied network coding to multihop wireless networks.
With network coding, each mesh router randomly mixes pack-
ets it has received before forwarding them. The random mix-
ing ensures with high probability that nodes will not forward
the same packet, and hence coordination overhead is min-
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imized. Network coding has one more positive effect. It
resembles traditional Forward Error Correction (FEC) tech-
niques, which offer reliability through redundancy, with the
extra advantage that it is applied at every hop, and not end-
to-end [16, 8]. Together, network coding eliminates the need
for reliability on a per-hop or per-packet basis. Since each
coded packet contains information about many packets, the
destination can reconstruct the original data if it receives suf-
ficiently many packets. MORE [3] was the first protocol to
combine opportunistic routing with network coding.

Both techniques use unreliable 802.11 broadcast as the
hop-by-hop forwarding technique, which is a significant de-
parture from traditional routing protocols. The use of broad-
cast is a necessity for opportunistic routing as well as effec-
tive network coding. Since the MAC now does not have to
deal with retransmissions and exponential backoffs, it can
send at much higher packet rates than in the unicast mode;
it is essentially limited only by carrier sensing. Sending at
higher rates potentially implies higher goodput. Since the
design goal is focused on high throughput, this observation
has an immediate implication for the evaluation methodol-
ogy of these new protocols: instead of using a constant rate
(CBR) of X packets per second, the source node should send
as fast as the MAC allows.

However, making the sources send as fast as the MAC al-
lows has a serious side effect. It can cause congestion in the
network if the aggregate transmission rate of the nodes ex-
ceeds the network capacity. As [14] showed, in contrast to
the wired Internet, where congestion is the result of a com-
plex interaction among many flows, in a wireless network,
congestion can happen even with a single flow, in a simple
topology and even with 802.11 unicast. The use of broad-
cast in this new generation of routing schemes simply wors-
ens the situation, since the lack of exponential backoff in the
802.11 broadcast mode means nodes never really slow down.

Rate control. With congestion, the queues of the nodes
become full, causing significant packet loss. We thus need to
reintroduce the mechanism for preventing the network from
reaching this state: rate control. SOAR [18] is a new op-
portunistic routing protocol that has a built-in rate control
mechanism, both at the source (using a sliding window) and
at intermediate routers (using small queues to avoid unpre-
dictable queuing delays). Other protocols (e.g., [19, 9]) pro-
pose hop-by-hop, backpressure-based mechanisms to limit
the amount of traffic injected in the network. Hence, rate
control, which used to be the responsibility of higher layer
protocols (transport or application), is now brought down to
the routing layer.

Inter-flow network coding. The final frontier is that of
increasing the network capacity itself! The basic idea is
again simple: a router can XOR packets from different flows
(hence inter-flow network coding as opposed to intra-flow
network coding discussed previously) and broadcast them.
If the next hop of each flow has already overheard all the
mixed packets except for the one destined for it, it can XOR
them again with the XORed packet to obtain its own packet.
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Network Layer

MAC Layer

Physical Layer

Application Layer

End−to−end reliability

End−to−end rate control

Packet forwarding

Application Layer

Network Sublayer3

Network Sublayer2

Network Sublayer1

MAC Layer

Physical Layer

(b) New Network Stack

End−to−end 

Packet forwarding
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Hop−by−hop
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rate control
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rate control
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(a) Traditional Network Stack
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     Medium access   Medium access

Figure 1: The evolution of the protocol stack.
COPE [12] was the first protocol that brought this idea from
theory into practice. By mixing packets belonging to differ-
ent flows and transmitting them as one, one reduces the total
number of transmissions required, and hence increases the
“effective” capacity of the network.

Since the technique stretches the capacity of the network,
the most natural way to show its improvement, i.e., the im-
plied evaluation methodology, is to subject the network to
a traffic load (not too much) above the physical capacity,
i.e., the network should already be congested before network
coding is turned on, which will then increase the effective ca-
pacity just enough to eliminate the congestion.

Reliability. Since 802.11 broadcast is unreliable, with
the exception of intra-flow network coding, which embraces
FEC, all other techniques, which rely on MAC-layer broad-
cast, require some ARQ-based recovery mechanism. ExOR
uses end-to-end retransmissions by going through the same
batch of packets until 90% of them are received by the desti-
nation; SOAR and COPE use asynchronous cumulative hop-
by-hop acknowledgments; COPE also relies partly on 802.11
unicast (known as pseudobroadcast [12]). Hence, in addition
to rate control, one more mechanism, reliability, which used
to be the responsibility of either upper (end-to-end) or lower
(hop-by-hop) layers, is now brought to the routing layer.

In summary, the “exotic” techniques used in new routing
protocols for WMNs have largely abandoned the layering
principle and adopted a merged-layer approach, as shown in
Figure 1. Mechanisms that used to be at lower or higher
layers are now blended into the routing layer. This consoli-
dation of mechanisms and techniques into the routing layer
has made the evaluation of routing protocol performance a
much subtler task than before. For example, some mecha-
nisms and techniques may be conflicting: inter-flow network
coding desires traffic load to be above the network capacity
while rate control targets the exact opposite.

In the next section, we discuss the resulting diverse set of
current practices in evaluating this new generation of routing
protocols. We show that, in contrast to traditional routing
protocols, there have been no clear guidelines that drive the
evaluation of these protocols; often times each new protocol
is evaluated with a different methodology.

2. STATE OF AFFAIRS

There have been many high-throughput routing protocols
for WMNs proposed over the last few years. Due to the page
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Table 1: Methodologies used in evaluating recent high-throughput WMN routing protocols.
Evaluation Methodology Example

Unreliable protocols

Make both protocols reliable but in different ways ExOR [1]
Evaluate for a wide range of sending rates, with deteriorating PDR COPE [12]
Compare a protocol with rate control against a protocol without rate control SOAR [18]
Old ad hoc methodology: keep the sending rate fixed below capacity, measure PDR ROMER [20]

Reliable protocols
Compare a reliable protocol against an unreliable protocol MORE [3]
Compare a reliable protocol against an unreliable protocol under TCP noCoCo [19]
Modify an unreliable protocol to incorporate the same reliability mechanism of a new protocol noCoCo [19]

limit, we review here the evaluation methodologies used in a
subset of them, as summarized in Table 1.

2.1 Evaluation of Unreliable Protocols

In the case of unreliable protocols (e.g., for multimedia
applications that do not require 100% PDR), the main ob-
jective is high throughput perceived by the destinations, i.e.,
high goodput. The new trend in the evaluation methodology
is to saturate the network, letting the sources send as fast as
possible so that the traffic load in the network exceeds the
available capacity; then measure the maximum amount of
traffic the protocol can deliver to the destination.

However, such a methodology is flawed in that it com-
pletely deemphasizes the PDR metric. The fact that certain
applications do not require 100% PDR does not mean that
reliability is a factor that can be completely neglected. Many
applications have certain lower bounds for reliability; for ex-
ample the quality of a video deteriorates with packet loss,
and hence if the PDR drops below a threshold, the video
quality becomes unacceptable.

Practice 1: Making both protocols reliable. ExOR guar-
antees reliable end-to-end delivery of 90% of each batch; ev-
ery node keeps retransmitting packets belonging to a given
batch until they are acknowledged by a node closer to the
destination. The last 10% of the packets could incur a lot
of overhead if they were sent through ExOR, and hence they
are sent through traditional routing, which does not offer any
guarantee for end-to-end reliability.

The authors argued that a direct comparison of ExOR with
traditional routing would be unfair and they conducted the
experiments in a way that guaranteed 100% PDR with both
of them. In each case, the size of the file to be downloaded
was 1MB. Instead of using traditional routing to carry the
last 10% of the file, the evaluation of ExOR was based on
the transmission of a 1.1 MB file, so as to compensate for
loss. In contrast, the traditional routing protocol was only
used to determine the route offline. The 1MB file was then
transfered sequentially hop-by-hop, thus eliminating colli-
sions, and also packet drops due to queue overflows.1

While this methodology was largely fair, it eliminated one
important feature of traditional routing that does not exist
in ExOR: spatial reuse. To avoid duplicate transmissions,
nodes in ExOR are assigned priorities, and only one node
transmits at a time – hence, coordination is achieved at the
cost of reduced spatial reuse. In contrast, with traditional
1The packet losses due to channel errors were masked in the testbed
through 802.11 retransmissions.

routing simultaneous transmissions can take place across the
network as long as they do not interfere with each other. This
advantage can turn into a drawback in the presence of a large
number of hidden terminals. In other words, by trying to
make the comparison fair by adding reliability to traditional
routing, the authors also removed one feature of traditional
routing. Whether this feature harmed traditional routing de-
pends on the particular environment used for the evaluation.

Practice 2: No rate control - varying the sending rate.
COPE in [12] was compared against a traditional routing
protocol (Srcr), under UDP traffic.2 In an 802.11a network
with a nominal bitrate of 6Mbps, the experiment was re-
peated for gradually increased total offered load. The aggre-
gate throughput over the total offered load for the two pro-
tocols was then presented, as shown in Figure 2 (Figure 12
in [12]).

We make several observations on Figure 2. First, the ad-
vantage of COPE is best shown when the traffic load in the
network is pushed beyond the capacity. Since it is not clear
what the traffic load is, the best thing is to measure through-
put for varying offered load, as done by the authors. As ex-
pected, at low loads, COPE performs similarly to traditional
routing. As the load increases, COPE offers on average 3-
4x throughput improvement over traditional routing. Sec-
ond, like traditional routing, the goodput of COPE also peaks
when the offered load is around the effective capacity of the
network (now higher because of inter-flow network coding),
and decreases quickly as the load further increases, and the
PDR value, which can be easily calculated by dividing the y
value by the x value, deteriorates sharply, possibly below the
acceptable level of many applications. Third, if the protocols
have rate control mechanisms, ideally the goodput should re-
main constant when the offered load is increased to beyond
the network capacity. Since neither protocol has rate control,
we witness the decline of the goodput.

Practice 3: Comparing a protocol with rate control
against a protocol without. SOAR applies sliding window-
based rate control at the sources, trying to discover the opti-
mal sending rate online. In contrast, traditional routing has
no rate control. This immediately creates a challenge for a
fair comparison of the two protocols. Faced with this chal-
lenge, the authors decided to perform the evaluation in a sat-
urated network, where each source transmits at 6Mbps, same
as the nominal bitrate of the network.
2 [12] also evaluated COPE and Srcr under TCP. In that case, al-
though the two protocols are unreliable, reliability is provided by
the transport layer.
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Figure 2: Evaluation of COPE and tra-
ditional routing in an ad hoc network
for UDP flows. Reproduced Figure 12
from [12].
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Saturating the network creates an adverse situation for tra-
ditional routing, which is expected to perform poorly un-
der these conditions and suffer significant packet loss due
to queue overflows. In contrast, SOAR adapts the sending
rate online, based on the network conditions. SOAR was
shown to offer a large throughput improvement over tradi-
tional routing (one example is shown in Figure 3, Figure
14(b) in [18]). However, it is not clear what part of the
improvement is because of the opportunistic forwarding and
what part is because of the rate control.

Practice 4: Old methodology (for evaluating ad hoc
protocols). ROMER [20] is another opportunistic routing
protocol which exploits link bitrate diversity in order to max-
imize throughput. It uses the 802.11 unicast autorate adap-
tation mechanism, and tries to send traffic over high rate
links, in contrast to ExOR and SOAR, which always use
a fixed link bitrate. ROMER was evaluated under yet an-
other methodology different from ExOR and SOAR. The au-
thors compared the PDR (and throughput gain) achieved by
ROMER over traditional routing, following the old method-
ology for ad hoc protocol evaluation. The parameter varied
is the link failure probability, while the source sending rate
is kept constant (and the value is unclear).

Due to the autorate adaptation, it is difficult to estimate
the capacity of the network used for the evaluation. The high
delivery rates achieved (at least) by ROMER (in Figure 4,
Figure 5 in [20]) make us conjecture that the sending rate
was not high enough to congest the network, in contrast to
in [18] and [12]. However, a single sending rate does not
reveal the maximum gain achieved by ROMER, in particular
if this rate is far below the capacity of the network.

2.2 Evaluation of Reliable Protocols

Traditional routing protocols left to the transport layer the
responsibility for end-to-end reliability. However, TCP, the
de facto reliable transport layer protocol for the wired Inter-
net, has been reported to perform poorly in multihop wire-
less networks [7, 13, 10], especially in environments with
many hidden terminals and highly lossy links. The reason
is that TCP performs congestion control in addition to reli-
ability and correlates these two mechanisms. High packet
loss causes TCP flows to suffer timeouts and excessive back-

off, and it prevents them from increasing their window size
and utilizing the wireless medium efficiently. This is the rea-
son many new protocols ignore TCP, and incorporate mecha-
nisms for end-to-end reliability at the network layer instead.

Practice 5: Comparing a reliable with an unreliable
protocol. In [3], MORE is compared against traditional rout-
ing showing a median throughput gain of 95%. The au-
thors used UDP traffic for both protocols sent at the maxi-
mum possible data rate, i.e., the source transmitted as fast
as the MAC allowed. As we have already explained, in a
highly congested environment, 802.11 unicast cannot help
traditional routing to recover from packet drops due to queue
overflows. In contrast, with MORE there is no queuing. With
a batch size of k packets, every MORE router only needs
to keep k linearly independent packets in a buffer; linearly
dependent packets do not include any new information and
can be safely dropped. Hence, a MORE router does not ex-
perience losses due to queue overflows, no matter how fast
it receives packets from its upstream nodes. In addition,
the FEC element contained in network coding masks packet
losses due to collisions and channel errors through redun-
dancy. Thus, a reliable protocol was compared against an
unreliable one.

This does not necessarily mean that the comparison fa-
vored MORE over traditional routing. In the evaluation of
the two protocols, a fixed size file was sent from the source to
the destination with each protocol, however with traditional
routing only a fraction of this file is finally delivered to the
destination. Depending on the fraction of the file that is lost
and the time taken for the transfer, this evaluation could fa-
vor any of the two protocols. In other words, adding an end-
to-end reliability mechanism to traditional routing would in-
crease the numerator of the throughput formula (the amount
of data delivered) but it would also increase the denomina-
tor (the time taken for the total transfer); this could lead to
either an increase or a decrease to the throughput achieved
with traditional routing.

Practice 6: Running an unreliable protocol under TCP.
An easy way to provide end-to-end reliability with an unre-
liable routing protocol is to run it under TCP; no change is
required to the protocol itself. This is one of the approaches
followed by [19] in the evaluation of noCoCo. noCoCo im-
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proves COPE by scheduling the transmissions at the nodes
in order to maximize the gain from inter-flow network cod-
ing. Coupled with scheduling in noCoCo is a backpressure,
hop-by-hop congestion control mechanism. This mechanism
eliminates queue overflows and packet dropping and guaran-
tees end-to-end reliable packet delivery. Hence, in noCoCo,
sources do not transmit as fast as the MAC allows; their send-
ing rates are limited by the congestion control mechanism.

In the evaluation, noCoCo was compared against COPE [12]
and traditional routing. The main goal was to quantify the
gains of coordinated network coding used in noCoCo against
opportunistic network coding, used in COPE. TCP was used
with COPE and traditional routing to provide reliability (and
congestion control) at the transport layer. However, TCP
is known to perform poorly in multihop wireless networks;
in addition, it was shown to interact poorly with COPE and
limit the coding opportunities and consequently the through-
put gain [12]. Hence, this methodology again blurred the
true gain from coordinated coding, since different congestion
control and reliability mechanisms are used. The authors ac-
knowledged this point and noted that it should be taken into
account when trying to interpret the results.

Practice 7: Modifying an unreliable protocol. To fi-
nally isolate the gain from coordinated coding, the authors of
noCoCo also modified traditional routing and COPE to use
the same backpressure-based algorithm for congestion con-
trol and reliability, thus removing the negative side-effects of
TCP.

2.3 Use (or No Use) of Autorate Adaptation

802.11 unicast allows a sender to change the bit rate au-
tomatically, based on the quality of the link to the receiver.
On the other hand, the majority of the “exotic” optimization
techniques are based on 802.11 broadcast, and hence most
of the new routing protocols based on these techniques (with
the exception of ROMER) do not use autorate adaptation.
For “fair” comparison, the evaluation of these protocols of-
ten disables autorate adaptation for the traditional, unicast
routing, e.g., in [1, 12, 18, 19] (one notable exception is [3]).
We argue the contrary; the methodology is unfair to tradi-
tional routing if it can benefit from autorate adaptation.

3. RECOMMENDATIONS

We have witnessed the inconsistencies in the current eval-
uation methodologies of the new generation of routing proto-
cols. In the following, we make recommendations for more
consistent and meaningful evaluation methodologies.

The importance of rate control. Rate control is funda-
mental for the optimal operation of any (unreliable or reli-
able) protocol, as it ensures that the traffic load does not ex-
ceed the network capacity limit.

Figure 5 shows our envisioned throughput performance
for well designed unreliable protocols. Traditional routing
under UDP has no rate control mechanism incorporated. When
the offered load exceeds the network capacity, packets start
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Figure 5: Envisioned throughput performance for well designed
unreliable protocols (with built-in rate control), in contrast to tradi-
tional routing and high-throughput protocols without rate control.

getting dropped due to congestion, possibly reducing the through-
put much below its possible maximum value. New protocols
with “exotic” techniques are expected to offer a dramatic in-
crease to the throughput; they can even increase the capac-
ity bound (e.g., from inter-flow network coding). However,
without rate control, congestion can build up and throughput
will also start decreasing when the (new) capacity point is
exceeded. By adding appropriate rate control, the goodput
is expected to remain constant when the offered load is be-
yond the capacity. One implication of this design guideline
is that there may be no need to vary the offered load beyond
the capacity point any more.

For reliable protocols, PDR remains 100% but the argu-
ment for rate control is still valid. When reliability is pro-
vided through the traditional way (ARQ), some rate control
is implicitly imposed, since retransmissions are given prior-
ity over new packets. However, when reliability is part of
the “exotic” technique (e.g., intra-flow network coding em-
braces FEC), the source may never slow down, unless ex-
plicitly forced by rate control. In any case, exceeding the
capacity of the network will lead to unpredictable behavior
which will appear either in the form of increased delays, se-
vere unfairness among flows, or reduced throughput. As an
example, the gain of MORE over traditional routing in [3] is
reduced in the presence of multiple flows. A related recom-
mendation is that a protocol should also be evaluated with
multiple flows, e.g., as in [3, 18], as the rate control for each
flow becomes more challenging.

Note that the best method for applying rate control in wire-
less networks is still an open problem and is out of the scope
of this paper. In general, online mechanisms (both end-to-
end, e.g., sliding-window based [18], and hop-by-hop, e.g.,
backpressure based [19, 9]) or even offline computations [14]
can be applied.3

Isolating the benefit from new optimization techniques.
The evaluation of a new protocol that exploits a new opti-
mization technique should try to isolate the gain from this
“exotic” technique, alone. The tricky part here is that in
adding a new optimization technique, a new protocol often
incorporates other old techniques brought down to the rout-
3Interestingly, the importance of rate control has attracted signifi-
cant interest in recent years in the theory community in the form of
cross-layer optimizations (e.g. [15]).
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ing layer from the upper layers, such as end-to-end reliability
and rate control. To isolate the benefit of the new optimiza-
tion, such techniques should be also incorporated in the tra-
ditional routing protocols. Similarly, comparing a reliable
protocol against an unreliable one should be avoided; if the
new protocol includes a mechanism for end-to-end reliabil-
ity, a similar mechanism should be added to the old protocol.

Separating rate control from end-to-end reliability. When
comparing a new reliable protocol to an unreliable one, the
simplest method to add end-to-end reliability to the unreli-
able (traditional or not) routing protocol is to run it under
TCP [19]. While this approach is simple, as no modification
to the protocol itself is required, it may obscure the perfor-
mance gain.

If the new protocol includes only reliability but no online
congestion control (e.g., as is the case with FEC-style relia-
bility), it is overkill to run the old protocol under TCP which
includes both mechanisms which interact with each other. In
this case, the throughput gap between the new and the old
protocols may appear larger as a result of poor performance
of TCP congestion control.

If the new protocol includes both reliability and online rate
control (e.g., as is the case with ARQ-style reliability), it can
be compared against the old protocol under TCP as a base-
case comparison. Even so, since it is known that TCP per-
forms poorly in wireless environments, it may still be unclear
what the real gain from the new “exotic” technique is.

We advocate that in both cases, one should attempt to in-
corporate the reliability/rate control features of the new pro-
tocol to the old protocol, following the methodology of [19].
In this case, the comparison will be able to isolate the gain
from the “exotic” technique exploited in the new protocol.
We acknowledge this is not always easy to do. In some cases
the reliability and congestion control mechanisms are dis-
joint components of the new protocol, not related to the new
“exotic” technique used (e.g., in noCoCo). In this case reli-
ability is typically provided in the traditional way (through
retransmissions). This disjoint mechanism should be also in-
corporated to the old protocol used for comparison. In other
cases, the reliability component of the new protocol may be
part of the “exotic” technique itself (e.g., in MORE), and
not a disjoint ARQ component. In such cases, the reliability
component should be carefully added to the old protocol, for
example, by adding FEC, and not by running it under TCP,
so that the comparison is not affected by the negative effects
of TCP’s rate control mechanism.

How to incorporate rate control to traditional routing?
Similar arguments against TCP apply here. If two unreliable
protocols are compared, one with a rate control component
and one without, running the second protocol under TCP is
not a good solution, because the reliability mechanism is not
required. What should be done is again incorporating the rate
control mechanism of the new protocol to the old protocol.
For example, in the evaluation of SOAR, the window-based
rate control mechanism used in SOAR could be easily in-
corporated to traditional routing; in that case the comparison

would isolate the gain of opportunistic forwarding.
MAC autorate adaptation. We argue that a good prac-

tice is for new “exotic” protocols to make an attempt to in-
corporate autorate adaptation. We acknowledge this is not
an easy task and perhaps it is not always feasible. Even in
those cases, we argue autorate adaptation should always be
enabled for the case of traditional routing; an “exotic” pro-
tocol should be shown to outperform traditional routing both
with and without autorate adaptation.

4. SUMMARY

In summary, we postulate that a fundamental reason for
the complexity of evaluating high-throughput WMN rout-
ing protocols is that the research community still does not
have a unified framework for understanding the interactions
of MAC layer, congestion, interference, network coding, and
reliability. WMN routing schemes are still being proposed as
point solutions in a space of options; the real problem goes
beyond how to evaluate them, but rather lies in how to un-
derstand the fundamental roles of their constituent parts.
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Wireless Networks Should Spread Spectrum Based On Demands∗
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ABSTRACT

Today’s local-area, mesh and cellular networks assign a sin-
gle narrow-band channel to a node, and this assignment re-
mains fixed over long time scales. Using network traces, we
show that the load within a network can vary significantly
even over short time scales on the order of tens of seconds.
Therefore, we make the case for allocating spectrumon-
demand to nodes and regions of the network that need it.
We present an architecture that shares the entire spectrum
on-demand using spread-spectrum codes. If implemented,
the system will achieve fine-grained spectrum allocation for
bursty traffic without requiring inter-cell coordination.Pre-
liminary experiments suggest a throughput improvement of
75% over commodity 802.11b networks. By eschewing the
notion of channelization, and matching demand bursts with
spectrum dynamically, better wireless networks that sustain
higher throughputs may be designed.

1 INTRODUCTION

Wireless spectrum is a precious resource. The holy grail for
the designers of wireless data networks is to maximize the
aggregate network throughput within the frequency band al-
loted to the network. The current approach toward this goal is
to first provision frequency bands to access points that form
cells. Then, within each cell, a MAC protocol determines
which nodes in the cell can transmit at any given time. To-
gether, provisioning and scheduling attempt to ensure high
spatial reuse (i.e., maximize the number of successful con-
current transmissions), thereby improving throughput.

In most current in-building or campus-wide wireless
LANs, network administrators provision cellular resources
over long time scales (weeks or months). Even in situations
where access points (APs) are able to dynamically pick their
operating channels from a wide-band selection, they pick a
fixed-width channel in which to operate. The result is that an
AP or a cellular base station uses a fixed chunk of the spec-
trum whenever it transmits, as does a client within a given
cell. This fixed-width allocation causes significant through-
put problems due to congestion on the wireless medium.
Such problems have been identified at individual 802.11
hotspots [15] as well as at sites with multiple APs [11].

Fundamentally, a fixed spectrum allocation is sub-optimal
because it does not track demand, which varies across dif-
ferent regions in the network and with time. Prior work has
reported significantly varying demands at conferences [3],

∗This work was supported by the National Science Foundation under
awards CNS-0721702 and CNS-0520032, and by Foxconn.

on campuses [12], and in enterprises [5]. For example, con-
sider a conference hotel that runs multiple APs, each as-
signed a different channel to reduce interference. During the
day, spectrum resources ought to be allocated to the APs in
the conference rooms and away from the APs where there
are few users. This strategy would achieve higher network
throughput. The same argument applies to a typical office
building, or to the wide-area cellular system during rush
hour, or to disaster relief situations when many agencies and
nodes all converge at a given location. 802.11 and cellular
networks use a variety of techniques such as Dynamic Fre-
quency Selection (DFS) [10] and cell breathing [2] to dis-
tribute load across cells. These technologies shift demandto
cells that are lightly loaded, but weaken the received signal
strength and limit throughput. In contrast, we advocate mov-
ing spectrum to cells that see higher demands.

We are not the first to recognize this fundamental short-
coming in existing wireless networks. A recent paper by
Moscibroda et al. [14] makes the case for replacing the fixed-
width channel of an AP and its client with a variable-width
channel that is adjusted at ten-minute intervals in order to
capture demand variations seen across APs. This proposal
is sufficient if the observed demand at an AP is roughly
constant over the channel-width update period. However, if
the traffic is bursty, it can waste spectrum because nodes
using narrow-width channels that have data to send cannot
use the spectrum allocated to temporarily idle cells assigned
broader-width channels. Decreasing the channel-width up-
date period increases inter-AP coordination and can decrease
stability and induce oscillations. In this paper, we focus on
the problem of improving the throughput of networks with
variable demands that are also highly bursty.

First, we present a trace study of wireless packet traces
from the OSDI 2006 conference showing that demands can
be both highly variable and bursty. Then, we argue that, for
such networks, we should dispense with the notion of chan-
nelization. To demonstrate the validity of this viewpoint,we
design and implement a direct-sequence spread-spectrum ar-
chitecture called ODS (On-Demand Spectrum), in which ev-
ery node uses the entire available spectrum. A node spreads
its signals across the entire spectrum using a fixed-length
pseudo-random spreading code. Such spreading decreases
the received throughput compared to a non-spreading trans-
mitter that uses the entire spectrum, even if the spectrum is
large enough to accommodate the bandwidth expansion in-
curred by spreading. To compensate for this throughput loss,
we allow a node to use more than one spreading code at
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the same time and bond its transmissions. The exact num-
ber of codes a node uses simultaneously depends on its de-
mand, as well as on the demands of other interfering nodes.
If no interfering node has data to send, the node increases the
number of spreading codes it uses to recover the throughput
loss incurred by spreading. This policy decreases the effec-
tive spreading factor and simulates a non-spreading trans-
mitter that uses the entire spectrum, not just a single fixed-
width channel. If some interfering nodes have data to send,
the node decreases the number of codes it uses by a corre-
sponding amount.

ODS uses a random policy for selecting the pseudo-
random spreading codes, and an adaptive receiver feed-
back mechanism to handle the challenging problem of fine-
grained spectrum allocation without requiring excessive syn-
chronization. Although the idea of using spread-spectrum to
reduce synchronization while sharing spectrum is not new,
what is new is the mechanism to regulate the number of
spreading codes based on observed demand. In the process,
ODS resolves the tension between the main appealing aspect
of CSMA, which is that any node can send data on an entire
channel without delay or coordination, and the chief benefit
of channelization, which is that a network operator can limit
interference across spatial regions.

We prototyped ODS using the USRP software radio plat-
form. Our system allows us to transmit signals at 1 and 2
Mbps data rates, which are spread using a 11-chip pseudo-
random spreading code similar to the Barker code used in
802.11b. Since the USRP is too slow to sustain the high
data rates of the chipped spread-spectrum signals, we im-
plement the spread-spectrum functionality within the USRP
FPGA, and transmit only the low-rate data streams between
the USRP and the host PC. Our implementation is prelimi-
nary and unoptimized. We compare the performance of ODS
against commodity 802.11b radios that use a fixed Barker
code in every device. Even when six transmissions interfere,
we find that, where 802.11b achieves only 45% of the aggre-
gate throughput without interference, ODS achieves 80% of
aggregate throughput, an improvement of 75% over 802.11b.
This improvement results from assigning spectrum using
multiple codes based on demand, instead of using a single
and fixed spreading code.

2 THE CASE FOR SPECTRUM ON DEMAND

To demonstrate that traffic can be both highly variable and
bursty, we present a small set of results obtained from over-
the-air traces collected during the OSDI 2006 conference [4].
Several recent studies have examined the performance of
802.11 networks in hotspot settings extensively [11, 15], and
found that such networks perform worse than expected un-
der congestion because of contention-related losses and de-
lays, as well as subsequent retransmissions and rate fall-
backs. These studies also suggest that the best way to im-
prove performance is to send smaller packets at faster rates.

In contrast, we posit that the primary contributor to such
poor performance is the varying nature of the demand itself
over both short (tens of seconds) and long (minutes to hours)
time scales. From the OSDI packet traces, we were able to
easily identify short time-periods (30-second intervals)in
which the demand across various APs varied by more than
a factor of 3.5. Further, we found that demands can change
completely over long time scales of several minutes to hours
when factors such as user movement and activity cause de-
mand to be shifted to a different portion of the network.
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Figure 1: Relative demands across five APs during two con-
secutive 30-second intervals (the areas of the circles are
proportional to APs’ demands). Demand can thus be both
widely variable and bursty.

Figure 1 shows the traffic demands at five APs over two
consecutive 30-second intervals. An AP’s demand is cal-
culated as the amount of data originated by the AP within
the 30-second period as determined by all sniffers that were
able to observe the AP. Even though the APs were well-
engineered in terms of orthogonal channel assignments and
placements, Figure 1 shows that demands are highly vari-
able and bursty. While Figure 1 shows only one data point of
bursty demands, we have found that instances of such bursty
patterns occur frequently in the trace. We leave a thorough
quantification of demand variability to future work.

3 ON-DEMAND SPECTRUM ARCHITECTURE

ODS makes two major changes to the way spectrum is cur-
rently allocated and used:

1. ODS allocates spectrum to nodes dynamically based on
their demands, and

2. ODS enables nodes to exploit concurrent transmissions
by allocating multiple spreading codes to nodes.

ODS has three components. The first one is a mechanism
that allows a receiver to estimate the future traffic demands
of its transmitters so that it can allocate the spectrum across
these transmitters. This mechanism works over short time
scales of several packet transmissions. The second is a mech-
anism for receivers to decide how to assign spreading codes
to transmitters according to the estimated demands. The third
is a mechanism to ensure that concurrent transmissions using
these codes can occur successfully, by allowing a transmit-
ter to adaptively discover how many of its allocated codes
can be successfully used before mutual interference due to
concurrent transmissions decreases usable capacity.

We first describe the mechanisms that allow a receiver to
determine the traffic demands of transmitters, and use them
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to estimate the transmitters’ code allocation (§3.1). Because
it is infeasible to coordinate receivers during code allocation,
we propose and analyze the performance of a random code-
selection policy that assigns a fixed-length pseudo-random
number (PN) code sequences to transmitters in an uncoordi-
nated manner. We fix the length of the PN codes at 11 chips,
for 802.11b compatibility. We show that the random code-
selection policy has good expected performance, while its
best-case performance approaches that of the optimum cen-
tralized assignment to within a constant factor ofe (§3.2).
Then, we describe how a transmitter uses all its codes con-
currently (§3.3), and finally describe how transmitters adap-
tively detect when excessive concurrency turns into interfer-
ence (§3.4).

3.1 Code Allocation

We assume that each noden has some packet transmission
demand ofdn bits that must be transmitted as soon as possi-
ble, and can transmit at an average rate ofrn bits/s.rn is the
average bit-rate that the transmitter sees after rate-adaptation,
which works at smaller time scales than demand scheduling.
We assume that there are enough codes in the system, and
that every node has access to at least one code by default.
We assume that these codes can be decorrelated well at a
receiver. The code availability and the decorrelation assump-
tions can be approximated in reality by using PN sequences
that have low cross-correlation.

ODS allocates PN codes to transmitters in proportion to
their demands. Demands are dictated both by the actual num-
ber of bitsdn that a transmitter needs to send, and the average
bit ratern at which it can send them. Each receiver adaptively
estimates these quantities on behalf of its transmitters, based
on previously observed demands and rates of the transmitter.
This estimation procedure is a simple moving average filter
over a period of 30 seconds, which we found works well on
the OSDI traces.

Once the receiver estimates its transmitters’ demands, it

assigns each transmittern a number of codescn = c

⌈

dn
rn

∑i
di
ri

⌉

,

wherec is the codebook size, which is the total number of
available codes. ODS uses a codebook size ofc = 128 by
default, which is large enough to utilize a 22 MHz-wide
802.11b spectrum fully. Further, this code assignment means
that, assuming that the number of clients associated with an
AP is not more thanc = 128, every node gets at least one PN
code (which is statically configured).

Interestingly, yet somewhat counter-intuitively, it follows
from this formula that, given two transmitters with the same
data load but different average bit rates, a receiver allocates
more codes to the slower transmitter that to the faster trans-
mitter, so as to increase concurrency, and improve the mean
packet transmission time. Such a policy has fairness implica-
tions different from the status quo, and we defer a thorough
study to future work.

Two potential issues in ODS are security (including vari-
ous forms of Denial of Service concerns) and mobility. Since

codes are ultimately allocated by the receiver, it is possible
to enforce expressive policies for a transmitter’s code alloca-
tion at the receiver. Further, since every receiver has access
to at least one PN code, it is not possible for selfish nodes to
completely deny network access, because spread-spectrum
provides some jamming immunity as long as the statically
assigned code is kept secret from the jammer. Small amounts
of mobility do not pose serious problems to ODS because
a receiver dynamically allocates codes to transmitters on a
short-term basis, and because each node’s statically assigned
code is portable. However, continued mobility could cause
problems, and we defer this problem to future work.

3.2 Code Selection

ODS uses an uncoordinated code assignment policy based
on random selection of PN codes. Each receiver assigns a
certain number of randomly chosen codes from a relatively
large, but fixed, codebook of PN codes to each of its trans-
mitters, without coordinating with other receivers. Conflicts
may arise in such a receiver-driven code selection when two
uncoordinated receivers allocate the same PN code to their
transmitters. We assume that when two concurrent trans-
missions use the same code, they are both corrupted. Oth-
erwise, both transmissions are correctly decoded. This is a
pessimistic model because, depending on the received signal
strengths, one or both transmissions might still be success-
fully decoded.

We now analyze the throughput of this code-selection pol-
icy. Let k denote the number of randomly selected codes as-
signed to each transmitterT , and letn denote the number of
receivers aroundT . From the perspective ofT , the expected
number of conflict-free codesλ it expects to be able to se-
lect isλ = k(1− k

c )
n. The reason is that each of thek codes

has a probability of 1− k
c of not being in conflict with the

code selected by any other receiver inT ’s vicinity. Due to
the independence selection property of codes and concurrent
transmitters, this formula forλ captures the expected number
of conflict-free codes selected by this policy.

λ represents the expected throughput achievable using
conflict-free codes, not including the one code statically as-
signed to every node. In Figure 2, we plot the performance
of λ as we increase the number of codesk allocated to each
node. The number of available codesc = 128. Each curve in
the plot represents the average throughput improvement seen
by a transmitter using multiple codes over a transmitter us-
ing a single code, when other contending nodes also pickk
codes independently.

We show that random code-selection is both efficient and
robust. For a given number of contending usersn and a given
code sizec, the per-node throughputλ = k(1− k

c )
n is opti-

mized whenkopt =
c

n+1, and is equal toλ = c
n+1( n

n+1)n. As
we increase both the code size and the number of contending
nodes keeping their ratio fixed,λ asymptotically approaches
c

ne . Thus, the optimum uncoordinated random code selection
is within a constant factor of the optimum fully coordinated

3

75



0

32

64

96

128

0 32 64 96 128

Number of codes per node

T
hr

ou
gh

pu
t p

er
 n

od
e

No contending node
Single contending node

Two contending nodes

Three contending nodes

Figure 2: Per-node throughput under varying number of in-
terferers.
strategy. Further, from the shape of the curves in Figure 2, it
is apparent that the penalty for sub-optimal selection ofk is
not severe as long ask is chosen to be approximately equal
to kopt. Thus, random selection is robust to incorrect estima-
tion of the number of contending usersn.

3.3 Code Bonding
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Figure 3: Illustration of bonding. Each sub-packet is spread
using a different PN code, and all sub-packets are sent in
parallel.

Bonding is a way of sending multiple sub-packets of a
packet concurrently using separate PN codes for each of
these sub-packets (Figure 3). The motivation is that, during
intervals of low demand, a large portion of the entire spec-
trum can be allocated to a single node, which can then use it
to speed up the overall packet transmission by first spreading
the individual sub-packets with their own spreading codes
and then multiplexing the coded signals onto the wide-band
spectrum (Figure 3). Similarly, during intervals of high de-
mand, fewer codes can be allocated per node, so that fewer
sub-packets can be bonded; in the worst-case, every node
uses only one code, so that there is no sub-packet bonding.
The bonding limit is dictated by SINR considerations. As
the number of sub-packets increase, the coding distance be-
tween two coded signals decreases, so it makes it harder for
the receiver to accurately decorrelate the sub-packets in the
presence of interference and noise.

3.4 Feedback-based Adaptation

ODS makes the entire spectrum usable by one or more nodes,
so we aim to maximize concurrent transmissions, as long

as they do not cause unacceptable interference to other con-
current transmissions. Statically deciding what the optimum
amount of concurrency is for an arbitrary topology is an ex-
tremely challenging problem: if an active transmitter usestoo
few codes, spectrum is wasted, but if too many transmitters
use too many codes concurrently, the achieved capacity is
decreased because every code of every transmitter interferes
with other transmitters.

To safely bound concurrency, ODS uses an adaptive mech-
anism that uses feedback from the receiver. A transmitter as-
sumes that a coded transmission is lost due to mutual inter-
ference with some probabilityp. If it is correctly received,
the transmitter has overestimated the interference from other
concurrent transmitters, and so decreasesp. If it is incor-
rectly received, the transmitter increasesp. In the ideal case
when the channel and other traffic are both invariant, the
probability will converge to either 1 or 0, depending on the
presence or absence of mutual interference. If the probability
reaches 1, the transmitter decreases the code rate by dropping
that code from its allocated code set and decreasing its cod-
ing rate. So, the transmitter’s own performance improves be-
cause of the lowered coding rate, which also has the positive
effect of simultaneously reducing the network-wide mutual
interference levels. In case network conditions improve, the
transmitter receives positive feedback about this fact from
the receiver’s decoder, which will see improved decoding
performance. On the other hand, if conditions deteriorate,the
transmitter will decrease the coding rate. We defer a careful
study of protocol dynamics such as the adaptation rate and
stability to future work.

4 IMPLEMENTATION AND EVALUATION
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PC
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Figure 4: ODS PN-code despreader design.

We built an ODS prototype using the USRP hardware. Our
main challenge was implementing high-rate coded samples.
The current USRP is limited by the throughput of the USB
bus to a throughput of 32 MB/s. Supporting an 802.11b-
compliant spread-spectrum stream means, assuming 2 Mbps
data and 11-chip codes, we must support 2× 11× 2 = 44
Msps to satisfy Nyquist sampling. Since each sample is 16-
bits, we need a throughput of 88 MB/s, which cannot be
met. Instead, we implemented support for spreading and de-
spreading the data in the FPGA on the USRP itself, so that
only the actual data needs to be shipped across USB.

This design is shown in Figure 4, which shows the ODS-
specific signal processing that is carried out on the FPGA for
the receiver section; transmitter section is similar. The in-
comingI,Q samples are decorrelated with the ODS-selected
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spreading code in the “Convolution Filter” blocks. We then
sum the amplitudes of the filteredI,Q samples and look for
peaks in the summed signal. We output only these peak sam-
ples, which correspond to the decorrelated data values. Our
implementation of random coding was based on the Barker
receiver implementation provided by the Utah SPAN lab [6].

Figure 5: I,Q outputs of the PN-code despreader.

Figure 5 shows the decorrelated values of theI,Q symbols
as received on the PC for a 2Mbps DQPSK transmission. The
symbols are clustered depending on what 2-bit data values
they were modulated with. Thus, the spreading/despreading
implementation provides satisfactory performance. We then
do data demodulation, as well as ODS-specific processing,
such as code allocation and multi-code bonding, on the host
PC. Since the FPGA can only support only one PN-code de-
spreading, we use multiple USRPs to implement bonding.

To test the end-to-end performance of ODS, we show
the BER (bit-error rate) plots of the received data at vary-
ing SINR (signal-to-interference-plus noise) ratios withand
without interference. We calibrate received and noise pow-
ers using a spectrum analyzer. Figure 6 shows the BER vs.
SINR of a receiver with and without interference. Data can
be received at relatively low SINRs because of the spread-
spectrum processing gain. Further, the throughput does not
degrade significantly with interference because the two con-
current transmissions use randomly selected PN codes.

To test ODS under different demands and levels of inter-
ference, we used a configuration with twelve nodes and six
interfering links. We measured the throughput obtained on
a link that could bond two 802.11b channels to obtain up
to 4 Mbps without interference. We then increased the in-
terference (and, hence, demands) on other links, and mea-
sured the bonded link’s throughput when the number of in-

SINR (dB)

B
E

R

Figure 6: SINR vs. BER plots with and without interference.

terfering links is varied between 1 and 5. Our main finding is
that, even in this high interference scenario and with a rela-
tively unoptimized implementation, ODS could sustain up to
80% of the ideal throughput of 4 Mbps (i.e, it achieved 3.18
Mbps) across all six links, while, under similar conditions,
802.11b PRISM cards could only manage 1.8 Mbps in total.
Thus, ODS improves 802.11b throughput by more than 75%
by tolerating interference better under loaded conditions. We
leave large-scale experiments to future work.

5 RELATED WORK

ODS uses spread-spectrum codes instead of frequencies.
There are both pros and cons with this choice. While
frequency-division multiplexing can provide orthogonality
without causing mutual interference, it suffers from a signif-
icant drawback within our architectural context—codes can
be finely divided and allocated, but fine-grained frequency
division requires more sophisticated hardware than is cur-
rently available. For example, even though a current wireless
chipset such as Atheros 5005GS can support variable-width
channels of 5, 10 and 20 MHz [14] and bit-rates down to
0.25 Mbps, it still consumes a 5 MHz spectrum at a mini-
mum to support the 0.25 Mbps rate. In contrast, commodity
PRISM chips such as HSP3824 [9] provide a 16-chip spread-
spectrum programmability. However, the advantage of using
frequencies is that we can use much higher bit-rates with
commodity cards (up to 54 Mbps with OFDM modulation
used in 802.11a/g). In an accompanying paper [8], we exploit
this high bit-rate facility along with variable-width channel
support to study how much throughput improvements are ob-
tainable with non-bursty, backlogged flows.

Spread-spectrum codes are used widely in cellular net-
works. For example, IS-95 voice networks and CDMA2000
data networks use spread-spectrum codes. However, these
systems allocate a fixed amount of spectrum to a base sta-
tion, and a heavily-loaded base station cannot borrow spec-
trum from its neighboring cells (which are on different chan-
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nels, in order to mitigate co-channel interference). Instead,
users are redirected to neighboring cells, which means the
received signal is weaker than if spectrum were allocated lo-
cally based on demand. ODS can be applied to such cellu-
lar networks to handle bursty traffic. A heavily loaded ODS
base station allocates more codes to its clients, while a lightly
loaded base station apportions fewer codes.

CDMA has been proposed as a solution for resource mul-
tiplexing in a number of previous proposals for multi-hop
wireless networks (e.g., [16]). The basic idea is that, by
using spread-spectrum processing, geographically separated
nodes can communicate concurrently in a much more effi-
cient manner than CSMA would allow. Each node in the
network is assigned a single code. Their main goal is not
to deal with variable demands but to maintain communica-
tion links among neighbors under disruptions due to interfer-
ence or mobility, by carefully reducing the transmit power of
some radios in the network. In contrast, ODS does not al-
ter the transmit power of nodes. Instead, it allocates more
bonded codes to nodes that have higher demands, either be-
cause they actually have more data to send or because they
are connected at lower bit rates than other nodes due to in-
terference or noise. Our overall goal of satisfying short-term
demands by allocating more spectrum to more demanding
portions of the network is also different than the disruption-
tolerance focus of these works.

At the link level, several frequency hopping strategies
to mitigate interference have been proposed recently, e.g.,
SSCH [1] and MAXchop [13]. Some commercial APs also
switch frequencies dynamically to minimize external inter-
ference. All these works still assume constant and equal in-
ternal demand at all nodes, while ODS allocates the entire
spectrum based on fluctuating traffic demands at nodes.

6 CONCLUSIONS AND FUTURE WORK

We made the case for handling bursty traffic better in wire-
less networks. We presented ODS, which achieves uncoor-
dinated and fine-grained spectrum allocation based on ob-
served demands. We found that ODS improves the through-
put of interfering links by 75% over 802.11b under high in-
terference conditions. Our preliminary results suggest that
wireless networks can see significant throughput improve-
ments by eschewing channelization completely, and instead
by matching bursty demands with spectrum dynamically.

We plan to conduct a more thorough evaluation of ODS at
higher bit-rates and larger topologies. More fundamentally,
we would like to characterize the capacity and achievable
rates of wireless networks with bursty traffic. Unlike the tra-
ditional notion of Shannon capacity that determines the fixed
rates achievable by nodes, the instantaneous throughput with
bursty traffic depends on the total received power, which in
turn depends on the number of active transmitters [7]. So, we
want to characterize this new notion of “bursty capacity” as
a function of nodes’ duty cycles and received powers.
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1 INTRODUCTION
Today’s wireless LANs are a mess. The current 802.11 fam-
ily of WLANs involves a jumble of competing standards, and
a slew of implementations with varying degrees of interop-
erability and conformance to those standards. This situation
has arisen in part from the need to innovate and evolve these
networks over time, driven by new applications and increas-
ing load. In the future we expect this situation to get worse,
given the shift towards wireless as the dominant access net-
work. Driving these changes are new devices such as Wi-Fi
enabled VOIP handsets and audiovisual equipment, as well as
new services such as Apple’s Time Capsule which performs
background backups over wireless. In the longer term, we an-
ticipate WLANs will become the default access network and
will support filesystem and server traffic as well.

Currently, it is not unusual for wireless LAN users to expe-
rience performance and reliability problems. A significant fac-
tor is the scarcity and poor utilization of the wireless spectrum,
which suffers from a “tragedy of the commons”. Scaling up
WLANs to meet new traffic demands, especially time-critical
applications involving audio, video, or sensor telemetry data,
is proving to be difficult. This is in spite of underlying in-
novations at the PHY layer, which largely address the need
for more throughput, but not how that throughput is managed.
Moreover, enterprises often have an interest in imposing cus-
tomized policies on WLAN traffic, for example, prioritizing
time- and safety-critical traffic over large file downloads.

Existing wireless LANs make poor use of the wireless spec-
trum, largely due to the “intelligence” which is hard-coded into
the vendor-specific software and firmware of wireless LAN
clients. For example, WLAN clients control the decisions for
AP associations, transmit power control, and physical data rate
adaptation. The 802.11 standards specify the mechanisms, yet
the policy is left entirely up to vendor-specific implementa-
tions. As a result, vendors view these areas as an opportunity
to innovate and compete with each other. However, the end re-
sult of these attempts to innovate are limited, and we argue that
is primarily an architectural limitation: by viewing the client
as a stand-alone entity that solely uses local information about
the devices it is interacting with, many important opportuni-
ties for improving the behavior of these algorithms cannot be
realized.

The current approach to innovation and evolution in wire-
less LANs is primarily through standardization, which has re-
sulted in an alphabet soup of protocols within the 802.11 fam-
ily. Certain Wi-Fi vendors offer vendor-specific WLAN ex-
tensions such channel bonding, or non-standard data rates to
support communication with weak signals. Such extensions
only work when both the AP and the client are using the same
brand of Wi-Fi chipset and software drivers, which prevents

widespread adoption. The downside to standardization is pri-
marily the glacial progress in deploying new protocols. The
standards process takes a very long time to reach agreement,
and even after standards are ratified it takes a long time to re-
place and/or upgrade the wide variety of client equipment uti-
lizing the infrastructure.

We argue that to move away from the current mess, we need
to rethink the basic architecture of wireless LANs. Our focus
is not on changing the fundamental building blocks such as
PHY-layer coding schemes or the CSMA nature of the MAC.
Rather, we are interested in a developing an architecture that
allows for extensibility, to ensure WLANs can adapt to meet
future needs. We are guided by two key design principles:
• Whatever we design today will be wrong in five years. If

history is any guide, we cannot anticipate all future uses for
wireless LANs. Furthermore, the best way to evaluate inno-
vations is through actual deployments with real users. With
current WLANs, deploying new hardware and upgrading
NICs and drivers for all of the affected clients is an expen-
sive proposition, not to mention the management and per-
sonnel costs involved. We argue that an extensible WLAN
can adapt to new uses, and can allow rapid deployment and
evaluation of experimental designs.

• Infrastructure should manage the wireless spectrum. Net-
works can make the best use of resources by shifting much
of the responsibility for managing the wireless spectrum
(such as associations, power control, channel assignment,
and physical layer rates) to the infrastructure, away from the
individual clients. This has the additional benefit of mak-
ing it easier to evolve the system because clients take much
less of the responsibility for spectrum management. This
approach also allows administrators to customize the net-
work’s policies for handling different traffic demands.
This paper describes Trantor1, a new architecture for wire-

less LANs. Trantor’s architecture is based on global manage-
ment of channel resources, taking this responsibility explic-
itly away from clients and moving it into the infrastructure.
To provide extensibility, the interface between the infrastruc-
ture and clients is simple and relatively low-level. Clients im-
plement a small set of relatively simple commands which al-
lows the complicated logic of the algorithms to exist primar-
ily within the infrastructure. The commands fall into two cat-
egories: measurement commands allow the infrastructure to
instruct clients to gather local information on channel condi-
tions, such as RSSI from visible APs, and to report this infor-
mation periodically; and control commands allow the infras-
tructure to control the behavior of clients, such as setting the
transmit power or instructing a client to associate with a spe-
cific AP. Each client still implements a basic CSMA MAC for
individual packet transmissions, but is otherwise not responsi-

1Named after the ruling planet of the first Galactic Empire as described by
Isaac Asimov in the Foundation series.
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Proposed Standard Year Proposed Year Incorporated
802.11m 1999 2007
802.11d 2001 2007
802.11h 2003 2007
802.11k 2003 2008
802.11r 2004 2008
802.11T 2004 No
802.11v 2005 No

Table 1: Proposed amendments to 802.11, dates of first task group
meeting and dates of incorporation into the standard

ble for most aspects of wireless management.
Trantor takes its cue from recent work on centralized man-

agement of resources in DenseAP [12], yet it pushes this ap-
proach much further by adding support for controlling physical
data rates, transmission power, and clear-channel assessment.
This approach can yield tremendous gains in efficiency, and
also can provide a control point for the infrastructure to impose
policies for shaping certain classes of traffic, prioritizing indi-
vidual users, and so forth. Trantor’s architecture is inherently
evolvable to support new classes of applications, and supports
global policy decisions to manage traffic load. Yet another key
benefit of Trantor is that it allows the infrastructure to collect
and use historical information (e.g. observations of client be-
havior over long time scales) to customize the behavior of a
WLAN to the characteristics of its particular environment.

2 BACKGROUND AND MOTIVATION
There is mounting evidence that wireless LAN architectures
cannot keep up with demands of new classes of applications.
Wireless LANs are already the most popular access network
in homes and hotspots, and are rapidly becoming dominant
within the enterprise. Apart from laptops, wireless interfaces
are now found in a wide range of consumer devices, includ-
ing smartphones, PDAs, media servers, set-top boxes, and
network-attached storage appliances. Indeed, we anticipate
that wireless LANs will dominate on desktops and even some
servers, leading to increased channel load and new traffic pat-
terns (such as filesystem traffic).

Industry is scrambling to respond to this challenge by in-
troducing ever more sophisticated upgrades to the 802.11
standard, including 802.11e (QoS support), 802.11k (associ-
ation protocol), 802.11d (regulatory domains), and many oth-
ers. The need for interoperability between clients and APs,
as well as backwards compatibility with previously-deployed
technologies, mandates standardization which is an inherently
slow process. Table 1 shows some of the 802.11 amend-
ments currently in task group, along with the year the task
group started. This situation has gotten to the point where we
have “metastandards” designed to manage the documentation
(802.11m) and testing (802.11T) of other standards. To illus-
trate the difficulty in deploying new improvements, consider
the time from when the first security flaws in WEP were dis-
covered to the present. Although today WPA and WPA2 have
significant use, there are still a surprisingly large number of
APs using WEP.

Another factor leading to the current situation is the heavy
reliance on clients to make decisions about their use of the

wireless spectrum. Even if such decentralized decision-
making were optimal (which it is not), differences in vendors’
implementations of the standards can lead to interoperability
problems and inefficient use of the spectrum. One possible so-
lution is to add more coordination to the client-AP interaction.
For example, 802.11e provides support for QoS by allowing
certain classes of traffic to be prioritized over others. However,
this requires changes to both the clients and APs, slowing in-
novation. Ideally, we should be able to achieve the same goal
without having to upgrade the client logic.

A third confounding factor is the commodity nature of
802.11 hardware, intended to drive down costs for NICs as
well as home access points. A laptop must work equally well
in a simplified 802.11b installation at home or in a sophisti-
cated enterprise network comprising multiple standards. It is
difficult to optimize an 802.11 implementation in such a mi-
lieu, requiring more and more complexity to be pushed into
the OS drivers.

Our goal is to lift wireless LANs out of this quagmire of
standards and develop a simple and extensible network ar-
chitecture that supports: heterogeneous traffic demands; fine-
grained control over network management; customized poli-
cies for traffic shaping and prioritization; and rapid innovation.
The key idea is to strip most of the complexity away from the
client and push it into the infrastructure, which we argue is bet-
ter suited to managing the wireless spectrum and performing
network management.

Some commercial efforts are a small step in this direction,
although they are hampered by the need to maintain backwards
compatibility with existing 802.11 networks. Cisco, Meru
Networks, and others support intelligent radio resource man-
agement for enterprise WLANs, collecting measurements on
interference, channel utilization, and other metrics to optimize
network capacity. Research projects such as DenseAP [12] and
MDG [6] have investigated approaches for managing 802.11
resources centrally to increase capacity. Similarly DIRAC [15]
explored managing APs centrally. However, these systems
are still limited by client-side behavior that may interact
poorly with the goal of network-wide optimization. On the
other hand, in [13] the author proposes equipping APs with
analog-to-digital converters such that they are oblivious to the
PHY/MAC layers being used at the client. As a result, all in-
telligence in the network is pushed to the clients.

Of course, stripping complexity from the clients is not with-
out its challenges and potential pitfalls. One key question is
how much complexity can be removed from the client with-
out losing control and efficiency. At one extreme, all aspects
of radio channel management of the client, including the PHY
layer, modulation scheme, and the MAC, could be relegated to
the infrastructure. However, in this work we decided to base
our system on the core pieces of the existing 802.11 standards
rather than pushing to this extreme. One reason is that this
makes it much easier for us to implement and experiment with
our architecture.

Nevertheless, we can experiment with many other aspects of
wireless management, including channel assignment, AP as-
sociations, power levels, PHY rates, and channel bandwidths,
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Figure 1: Proposed Trantor architecture. APs send summaries to the Central
Controller (CC) about local information as well as responses from clients.

because these knobs can be tuned at coarser time scale. We
also retain base 802.11 functionality (associations, authenti-
cation, etc.) to support legacy clients and hardware. Hence,
Trantor builds on top of an underlying CSMA MAC and base
802.11 functionality.

Related to this issue is a key question: at what point should
one stop modifying the client? Is it at the application layer, the
MAC, the PHY, etc.? One approach is to realize the SDR vi-
sion by using an analog-to-digital converter at the client which
downloads the entire PHY and MAC layers from the infras-
tructure. This is an extreme design point as it offers the high-
est degree of extensibility. However, moving to a complete
SDR side steps the issue of what functionality should be imple-
mented at the clients and what responsibility should be given to
the infrastructure? For example, should clients continue to de-
cide when to transmit and which modulation schemes to use?
At the heart of these issues is a debate on the ideal separation
of functionality between the client and the infrastructure, given
that we want to be able to enable rapid innovation in the wire-
less network without sacrificing performance. For the rest of
this paper we address this debate in the context of 802.11 only
but as part of our ongoing and future work we are also actively
exploring how PHY/MAC layers weigh in on these questions.

The second key challenge is determining how much infor-
mation the client should collect and report to the infrastruc-
ture to assist in management decisions. Given complex and
dynamic environments exhibiting interference, multipath, and
node mobility, the number of variables that affect an individ-
ual client’s link quality can be extremely large. Ideally, each
client could report measurements on the observed channel oc-
cupancy, RSSI from multiple APs (and other clients), and vari-
ation in channel conditions over time. However, collecting this
information could involve high overheads and interact poorly
with power-saving measures at the client.

In the following sections, we outline the Trantor architecture
and describe our approach to these challenges.

3 TRANTOR ARCHITECTURE
In this section we first outline the Trantor architecture and then
describe the various management aspects of the system.

In a typical WLAN architecture (such as Aruba [1] or
Meru [2]) deployed in the enterprise, the infrastructure con-
sists of APs managed by a central controller (CC). In this
context, management entails channel assignment and transmit

power control. A controller manages the channel and trans-
mit power for each AP. Clients on the other hand make many
decisions independent of the infrastructure. In some small net-
works, there is no CC and each AP acts independently [3].

The Trantor architecture is illustrated in Figure 1. The main
difference between current architectures and Trantor is that
various decisions clients currently make have been shifted to
the CC. In Trantor, clients receive commands, collect measure-
ments, and report back to the infrastructure. The CC manages
all APs and clients in the system. Each AP periodically sends
summaries consisting of its own local measurements as well
as the local measurements collected by each associated client.
Therefore, the CC receives information from every wireless
node in the system, be it an AP or a client. The CC does not
receive reports from a client not associated with the network.

Based on the summaries received from APs, the CC exe-
cutes various algorithms and can do one of the following: (i)
send a command to an AP to execute a particular action (for ex-
ample, change channels, disassociate a particular client, etc.),
or (ii) send a command to a client (via an AP). Later in this
section we elaborate on the commands the CC can send to the
client. Note that this design does not require true centraliza-
tion: a “logical” central controller can be implemented in a
decentralized manner across all the APs in the system. The
key point however is that most of the intelligence resides in
the infrastructure and not with the clients.

This architecture is extensible because policy changes can
be easily introduced into the system at the CC. Since clients
and APs report summaries to the CC, the infrastructure also
has global knowledge of the system. The CC also utilizes a
database to store received summaries to main historical knowl-
edge of the system.

Trantor is intended for an enterprise environment where
there is one administrative domain that manages all APs.
Academia and industry have examined centralizing the data
plane and certain decisions such as channel assignments.
DenseAP [12] examined centralizing associations. Trantor
pushes this further by building an extensible architecture
where those decisions that can benefit from global and histori-
cal knowledge have been moved from clients to the infrastruc-
ture. This approach distinguishes Trantor from prior work. In
the future, as wireless networks evolve and potentially newer
decision-making aspects of clients are introduced, we envision
moving more such decisions to the infrastructure. However,
note that decisions such as going into power saving mode do
not necessarily benefit from global knowledge and hence are
retained at clients. Also, in this paper, we only focus on in-
frastructure mode in clients and not on ad-hoc mode since the
former remains the dominant use of wireless networks in the
enterprise.

We now describe the design of clients and the infrastructure
in the system.

3.1 Client Design
Clients (and APs) are dumb agents controlled by the infrastruc-
ture. Table 2 outlines the various commands the CC sends to
APs and clients in the system. Most commands are common to
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ListNodes() Report list of < mac, rssi > heard
ReportLoss(n) Report loss-rate when sending to n
ReportReTrans(n) # of retransmissions when sending to n
ReportAirT ime(n) Report air-time utilization
TxPackets(x, s, n) send x packets, each of s bytes to n
Associate(ap) Associate with AP ap
SetTxLevel(p) Set transmit power to p
SetCCA(t) Set CCA threshold to t
SetRate(r) Transmit all future packets at rate r
AcceptClient (c) AP lets client c associate with it
Handoff (ap, c) Handoff client c to AP ap
EjectClient (c) Disassociate c from the network

Table 2: Sample set of commands the CC sends to clients and APs.
n is a wireless node. Commands in bold are applicable to APs
only.

both APs and clients. We first focus on how these commands
are used by the CC when dealing with clients.

Collecting Measurements: The infrastructure can use the
commands listed in Table 2 to estimate packet losses, retrans-
missions, RSSI of packets from APs, other clients in the vicin-
ity, and channel utilization, all as seen by a client. Our work-
ing hypothesis is that such information is fundamental to all
macro-level decisions such as associations, handoffs, power
control, and rate-adaptation [6, 12]. Clients collect measure-
ments over a measurement window w, which is selected by the
infrastructure. w may be changed over time to permit finer- or
coarser-grained measurements from each client.

A challenge for the infrastructure is to normalize measure-
ments reported by different clients which may be using dif-
ferent radio chipsets. For example, raw RSSI values reported
may vary across clients due to variance in receiver sensitivity.

Active Probing: Using the TxPacket command, the CC can
instruct clients to perform active measurements. Active probes
can be used to directly ascertain link quality, congestion, and
other conditions that can be difficult to derive from passive
measurements alone. They can also assist in diagnosing per-
formance issues in the network; we discuss this further in Sec-
tion 4.

Measurements collection and active probing by clients are
unique to the Trantor architecture and represent two funda-
mental primitives to support extensibility. By combining these
mechanisms, the CC can collect detailed measurements of the
network state and factors that affect client performance, such
as traffic patterns, interference, and channel congestion. Such
an approach can potentially reduce the need for a dedicated
wireless monitoring infrastructure [8, 5].

Collecting this information from clients achieves three key
goals of the Trantor architecture. (i) the infrastructure can
optimize the overall performance observed by clients in the
network, by tuning many aspects of individual clients’ use of
the radio channel. (ii) the infrastructure can impose policies
to manage competing uses of the radio channel. (iii) Trantor
can automatically diagnose and remedy performance problems
through centralized observation and control.

We briefly present two example uses of the measurements
collected by the infrastructure.

• Conflict graph construction: Using information collected
from clients, Trantor constructs a conflict graph of the set
of clients currently interfering with each other on the same
channel, whether or not those clients are currently associ-
ated with the same AP [4]. This information can be used
to mitigate interference by tuning channel assignments and
transmission power control of individual clients.

• Active AP selection: Trantor can leverage active probing
measurements between clients and APs to optimize client-
AP associations. If the loss-rate between a client and its AP
rises above a given threshold, rather than relying strictly on
client RSSI measurements (as is currently done), the CC ini-
tiates active probing between the client and multiple nearby
APs to determine the best association.

3.2 Infrastructure Design
In Trantor, the infrastructure bears the additional responsibil-
ities of managing client-AP associations, channel assignment,
power control, and rate-adaptation.

There is a mutual interdependence between these various
aspects of wireless channel management. For example, man-
aging associations affects the the number of clients on a given
channel (since clients are assigned to APs fixed on a single
channel) which in turn has the potential to increase interfer-
ence. Reducing transmit power levels of interfering nodes can
mitigate this problem, but it also affects the reception rate for
a given data rate (since the probability of successfully decod-
ing a packet for a data rate is determined by a SNR threshold).
Performing a joint optimization of these decisions is a non-
trivial problem. However, in Trantor since the infrastructure
has global and historical knowledge of the performance of the
wireless network as well as control over client behavior, it has
the potential to address this problem. This is an aspect of the
system we are actively exploring. Prior WLAN architecture
proposals have lacked such information and hence it has been
harder for them to address this problem. We briefly describe
possible techniques to address these management decisions.
Client-AP Associations: Using Associate(ap), the CC has
the ability to control which AP a client can associate with.
It can also use AcceptClient and RejectClient to prevent a
client from associating with an AP. As prior work [6, 12] has
shown, client-AP association decisions must take into account
load at the AP as well as the quality of the client-AP connec-
tion. As mentioned earlier, Trantor can leverage active probing
measurements for this purpose. Furthermore, historical infor-
mation can also help improve association decisions. For ex-
ample, prior work [7] has observed clients in certain locations
in an office building in spite of receiving strong signals from
an AP, experience heavy packet losses due to a poor wireless
channel. Such information can be used to quickly converge on
a client-AP association decision.
Transmit Power Control: Prior work [6] has shown how co-
ordinated power control can lead to an increase in overall net-
work capacity. We adopt a similar approach. The CC also has
control over each client and AP’s CCA threshold since it is
required to set the appropriate power level at these nodes.
Rate Adaptation: Prior work on rate-adaptation has focused
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on clients adjusting rates based on local information such as
packet loss or RSSI of received packets. Packet losses at a
client commonly occurs due to one of the following reasons:
(i) collisions caused by hidden terminals, (ii) local channel
noise. The remedy to (i) is to increase or fix the current data
rate. The remedy to (ii) is to lower the current rate in order
to improve the SNR of the signal. Hence, it is important to
distinguish between the two cases when determining the next
course of action for rate adaptation. Most prior work in this
space suffer from the lack of additional information that can
help distinguish between these two cases.

Prior work has shown that some cooperation between clients
and the infrastructure can help a client pick better rates [10].
In Trantor, the availability of global and historical knowledge
can facilitate rate adaptation further. We argue data rates must
be adjusted based on a longer term view of the network rather
than just the recent few packets. Hence, based on reports from
nearby APs and clients (global knowledge) and observing the
behavior of the network over long periods of time (historical
knowledge), the CC can potentially ascertain the reason behind
significant packet losses in the network [8]. Based on the mea-
surements received from APs and clients, the CC constructs
a conflict graph and uses a probabilistic analysis to determine
if an AP or client is experiencing loss due to a hidden termi-
nal like problem or due to channel noise. Using this analysis
it instructs each node precisely which data-rate to transmit at.
A node continues to transmit at the same rate until its told to
change its transmission rate by the CC.

There is a tradeoff between using global knowledge for cen-
tralized rate adaptation and the timescale over which this can
be performed for each wireless node. A slow rate adaptation
can result in an AP or client temporarily experiencing poor
performance. Our working hypothesis is that nodes do need to
change data rates but not as often as prior work has come to ex-
pect. In other words, we do not expect the wireless medium to
be choppy on a sustained basis and therefore we prefer choos-
ing a “correct” rate slowly than an “incorrect” rate quickly.
Mobility: Since the infrastructure handles associations it is
must also handle mobility. While a client can be instructed to
explicitly associate with a different AP (hence the actual cost
of the handoff is negligible), delays might be incurred by the
infrastructure in gathering measurements, analyzing them, and
determining if a handoff should take place. This is where his-
torical knowledge of the wireless network is key for improving
performance. In an office deployment, clients typically move
along corridors or hallways. The infrastructure can observe
such patterns and predict the trajectory that a client will take.
This can help reduce the time taken to determine when a client
must switch APs. To enable handoffs, the CC uses Associate
to inform the client to switch associations and Handoff to in-
form the source AP to send the association state and buffered
packets to the destination AP.
Classifying Clients: The ability to offer differentiated ser-
vices to clients is a key gain the Trantor architecture has to
offer. To achieve this the system must be able to quickly clas-
sify clients based on their traffic. Such classification is im-
portant because it impacts the association and handoff deci-

sions. For example, VOIP clients tend to suffer when contend-
ing with bulk transfer clients for the same part of the spec-
trum. Therefore, in Trantor, we can associate clients to dif-
ferent APs on different channels based on their traffic classi-
fication. This entails clustering VOIP clients together when
performing associations or handoffs. Furthermore, it is also
important the system classifies a client quickly since this can
impact the handoff latency. We address the classification prob-
lem using a lightweight technique whereby each AP monitors
the flow of packets to/from a client. Using a technique simi-
lar to one proposed in [11], observing a few samples of packet
size, port number, and inter-packet arrival time, the AP clas-
sifies the client’s traffic as (i) latency sensitive or (ii) a bulk
transfer. However, there can be cases when a client simultane-
ously starts a Skype call (VOIP) and also begins a file down-
load. We currently classify such clients as being bulk transfer
agents.

4 BENEFITS OF TRANTOR
In this section we discuss several tangible benefits that the
Trantor architecture provides.

Traffic differentiation: Trantor permits the network admin-
istrator to impose local policies on the network to prioritize
certain clients over others based on their traffic. For example,
hospital environments may want to prioritize data from hospi-
tal instruments over standard WiFi usage, and companies may
want to limit large media downloads during the day. This could
entail various approaches such as grouping client associations
based on their traffic type or rate limiting certain clients more
than others.

Site-specific policies: A direct consequence of extensibility
is the ability to customize the behavior and performance of
the wireless network based on the context. Prior work has
shown wireless traffic patterns fluctuate by time of day as well
as location [14]. For example, a large auditorium or confer-
ence room might experience heavy spikes of traffic congestion
during meetings, whereas dormitories may experience heavier
loads at night. To deal with such situations, the infrastruc-
ture needs to dynamically provision the spectrum based on the
client traffic mix. We present two example policies and briefly
describe how they impact the various decisions made by the
infrastructure.
• All APs on the corridor in the 2nd floor must prioritize VoIP

traffic over other kinds of traffic between 9 a.m. and 4 p.m..
Because VoIP clients are sensitive to packet losses and jitter,
we want them to be able to use lower data rates and at the
same time not have to contend for the medium with other
clients performing bulk transfers. Hence, the infrastructure
would impose an association policy that prioritizes associ-
ations and handoffs from VoIP clients, assigns higher data
rates and power levels to VoIP clients, and hands off mobile
clients more aggressively.

• Based on the number of web clients on the 1st floor, the first
floor wireless network must devote X% of APs to interactive
traffic. In this case the infrastructure would enforce an asso-
ciation policy that only permits interactive traffic clients to

5
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use certain APs. This policy could also entail more aggres-
sive rate-adaptation.

Fault Diagnosis: Based on client measurements reports, the
infrastructure can detect, resolve, or at least shed more light
on performance anomalies and outages in the network. Two
typical examples of such diagnosis are as follows.
• Rate Anomaly: The rate anomaly problem arises due to the

“worst client” impacting the performance of other wireless
clients in the vicinity, and prior work has shown this can
significantly reduce WLAN capacity [9]. In Trantor, be-
cause the infrastructure controls the transmission rate for
each client, it can now detect such rate imbalance situations
and either increase the data-rate for the offending client or
change its association to a different AP.

• Reasoning about client losses: Using global and historical
knowledge, the infrastructure can attempt to ascertain why a
client experiences significant losses. This impacts rate adap-
tation as well as transmit power (at the APs). However, per-
sistent losses (despite rate and power changes) could be used
to diagnose whether a particular area of the building suffers
from poor channel conditions.

5 DISCUSSION AND CONCLUSIONS
We present Trantor, an extensible architecture for WLANs.
The fundamental tenet of the Trantor architecture is to move
wireless management decisions from clients into the infras-
tructure when such decisions can benefit from global and/or
historical knowledge. As part of this we proposed centralizing
various wireless management aspects. Trantor is also able to
provide better customization of a WLAN according to an en-
vironment. We now outline some key challenges we plan to
investigate related to the Trantor architecture.
Dealing with malicious clients: It is relatively easy to detect
violations where a client does not follow the infrastructure’s
instructions. For example, based on reports from APs and
other clients, it is easy to detect such violations and disasso-
ciate the offending client from the network. However, it is a
much harder problem to determine if a malicious (or faulty)
client is sending spurious reports. One potential way to ad-
dress this problem is to verify such reports with reports from
other APs and clients in the neighborhood, but this remains an
open issue.
Scalability: The scalability of the Trantor infrastructure de-
pends on a host of factors including: the rate at which each
client is polled for measurements; the size of the measure-
ments reports; and the ability of the CC to make quick de-
cisions during handoffs and change rates quickly when nec-
essary. To be effective in enterprise settings, the central con-
troller must be designed to handle a large network consisting
of thousands of APs and clients. One strategy to scale grace-
fully is to use a zoned approach in which separate controllers
are assigned to distinct physical zones in the network (such as
different buildings, or floors of a building), with the assump-
tion that limited sharing is required across zone controllers to
make effective network management decisions.
Presence of other interfering networks: An argument for
clients retaining their decision making abilities is for them to

react to interference from other competing wireless networks
in the vicinity. However, since clients are always reporting
measurements to the infrastructure, such events can be dealt
with effectively in our proposed infrastructure as well. The
infrastructure can profile which other competing networks are
operating in the vicinity and use this information when deter-
mining policies for clients.
Security: Trantor’s extensibility can make it easier to deploy
new security mechanisms. This is critical to the operation of a
wireless network because in the event a security mechanism is
found to be flawed (WEP, for example), without depending on
new standards to be adopted, it is easy to implement and push
out new security mechanisms quickly in Trantor. For example,
WPA2 was proposed as a replacement for WEP via 802.11i
and it did not require hardware changes. Such updates can
be easily rolled in Trantor but it would require expanding the
interface listed in Table 2.
Responsiveness: One open question is whether the clients
need to adapt their behavior more rapidly than can be easily
accommodated by the Trantor architecture, with its cycle of
collecting data, analyzing it centrally, and then sending out
commands to cause the clients to adapt.
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ABSTRACT

Current Internet transports conflate transport semantics with

endpoint addressing and flow regulation, creating roadblocks

to Internet evolution that we propose to address with a new

layering model. Factoring endpoint addressing (port numbers)

into a separate Endpoint Layer permits incremental rollout of

new or improved transports at OS or application level, enables

transport-oblivious firewall/NAT traversal, improves transport

negotiation efficiency, and simplifies endpoint address space

administration. Factoring congestion control into a separate

Flow Layer cleanly enables in-path performance optimizations

such as on satellite or wireless links, permits incremental roll-

out of new congestion control schemes within administrative

domains, frees congestion control evolution from the yoke of

“TCP-friendliness,” and facilitates multihoming and multipath

communication. Though this architecture is ambitious, exist-

ing protocols can act as starting points for the new layers—

UDP or UDP-Lite for the Endpoint Layer, and Congestion

Manager or DCCP for the Flow Layer—providing both imme-

diate deployability and a sound basis for long-term evolution.

1. INTRODUCTION

Typical transport protocols combine several functions, such

as identifying application endpoints via port numbers [38, 49],

providing end-to-end congestion control [27], utilizing alter-

nate communication paths [33,46], and implementing reliable/

ordered communication [37, 46, 49]. Lumping these functions

into one layer has made the transport layer brittle and diffi-

cult to evolve, however, by preventing evolution of individ-

ual transport functions without affecting the entire transport

layer. Since firewalls and NATs [45] must understand trans-

port headers to extract port numbers, for example, new trans-

ports [28, 46] are almost undeployable because they cannot

pass through existing middleboxes. Similarly, new conges-

tion control schemes [20] and performance enhancing prox-

ies [11] cannot be deployed on specific segments of a commu-

nication path without breaking end-to-end semantics [41] and

fate-sharing properties [16].

To remove these evolutionary roadblocks, we propose split-

ting the Transport Layer into (at least) three separate layers,

shown in Figure 1. We factor out the function of identifying

logical communication endpoints—traditionally represented as

16-bit port numbers—into an Endpoint Layer protocol to be

shared among transports. We factor out congestion control and

other performance-related mechanisms into a separate Flow

Regulation Layer, or simply Flow Layer. The services remain-

ing in the Transport Layer are limited to providing the end-to-
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Figure 1: Breaking up the Transport Layer

end communication semantics needed by higher-level layers,

such as reliability, ordering, and error recovery.

In contrast with prior work that factored out these functions

for specific technical reasons [6, 18, 28, 50], our focus is on

identifying and addressing evolutionary impediments to Trans-

port Layer development. Our primary contribution is a new

architectural model that better facilitates evolution, and that

places a variety of existing, often mutually exclusive “trans-

port hacks” into a clean and interoperable framework.

Section 2 details the purpose, architecture, and practical im-

plications of our Endpoint Layer, and Section 3 similarly de-

tails our Flow Regulation Layer. Section 4 outlines issues in

implementing and further evolving the Endpoint, Flow, and

Transport layers, and Section 5 concludes.

2. THE ENDPOINT LAYER

Our first modification to the classic Internet architecture is

separating the function of identifying logical endpoints or ports

out of transport protocols and into a common underlying End-

point Layer. We view the Endpoint Layer as an extension to the

Network Layer: where the Network Layer provides inter-host

addressing and routing via IP addresses, the Endpoint Layer

provides intra-host addressing and routing via port numbers.

The Endpoint Layer does not otherwise affect the underlying

best-effort delivery service: higher layers are responsible for

congestion control, ordering, and reliability. All higher lay-

ers ideally reside atop a single Endpoint protocol, sharing one

endpoint address space per host.

Our insight is that building new transports atop a common

Endpoint Layer, instead of atop IP as in the current model,

may facilitate flexibility and protocol evolution in several ways.

We first address architectural foundations, followed by practi-

cal benefits of the proposed model. We leave Endpoint Layer

implementation issues to Section 4, which proposes reusing

UDP [38] as an already widely supported “Endpoint Layer pro-

tocol,” and then suggests paths toward richer functionality.
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Figure 2: A UDP-based user-space transport cannot inter-

operate with a “native” IP-based kernel-space transport.

2.1 Architectural Perspective

All standard Internet transports [28, 37, 38, 46, 49] multi-

plex transport sessions onto a host’s few IP address(es) via

16-bit port numbers. Each transport implements this multi-

plexing separately and embeds port numbers in its own trans-

port header, making port numbers a common design pattern

but not a shared facility. Nevertheless, each port space tends to

be functionally equivalent; the IANA historically assigns well-

known ports consistently across transports although the port

spaces are technically independent.

Embedding port numbers into transports is consistent with

the OSI reference model [56], where each layer provides its

own space of service access points (SAPs) for higher layers to

bind to: IP addresses correspond to Network-SAPs (NSAPs),

port numbers to Transport-SAPs (TSAPs), and OSI addition-

ally has Session-SAPs and Presentation-SAPs. The full “iden-

tity” of an endpoint consists of the SAPs of all layers bundled

together: IP address and port number on the Internet, all four

SAPs in OSI. This layered multiplexing design has appeal but

causes known problems: Tennenhouse argued against it due to

the difficulty of real-time scheduling across layers [50], and

Feldmeier elaborated on several related issues [18].

An alternative approach is to treat the intra-host addressing

provided by port numbers or SAPs as an extension to the inter-

host addressing already provided by the Network Layer, and

implement this intra-host addressing once in a facility shared

by all higher layers. In Sirpent [14], intra-host addresses (port

numbers) are part of the source routes the network layer uses

for routing. An analogous design with CIDR addressing would

be to assign each physical host or network interface a whole

“virtual subnet” of addresses representing the logical endpoints

on that physical host. It may be too late to merge port numbers

into IP addresses, but our Endpoint Layer revisits the idea of

sharing one endpoint space among upper-level protocols in-

stead of each transport implementing its own.

2.2 Practical Benefits

Independent of the concerns of Tennenhouse and Feldmeier,

factoring out endpoint multiplexing brings several practical ben-

efits that are relevant today: transport implementation flexibil-

ity, firewall/NAT traversal, and transport protocol negotiation.

2.2.1 Transport Implementation Flexibility

The IP header’s 8-bit Protocol field was intended to dis-

tinguish between only a few standard transport protocols, not

between many application-level endpoints, so most operating

systems prohibit unprivileged applications from “hooking” IP

Figure 3: A UDP-based user-space transport interoperates

with a UDP-based kernel-space transport.

Protocol numbers in the way they can allocate and use ports.

The OS thus reserves the right to implement new “first-class”

transports. If an application wishes to deploy its own trans-

port protocol that is not yet supported by the host OS, it must

layer the new transport atop UDP. The resulting application-

level transport not only has second-class status but is unable to

interoperate with a first-class OS-level implementation of the

same transport on another host, as shown in Figure 2. This re-

striction creates a barrier to the deployment of new transports,

since the easiest way to deploy new protocols incrementally is

often to bundle them with the applications that need them.

If new transports are built atop an Endpoint Layer, however,

applications can easily ship with new transports implemented

in user-space libraries requiring no special privilege. Once a

transport begins migrating into OS kernels, kernel-level and

user-level implementations of the same transport can remain

interoperable, as shown in Figure 3.

2.2.2 Transport-Independent Middlebox Traversal

For better or worse, middleboxes such as firewalls and net-

work address translators (NATs) are now ubiquitous, and most

of them are sensitive to the full endpoints of a given flow: not

only IP addresses but port numbers as well. Since each trans-

port traditionally implements its own port space, middleboxes

must parse transport headers, and so only the few already-

ubiquitous transports—TCP and UDP—can traverse most mid-

dleboxes. New transports like SCTP [46] and DCCP [28] that

are designed to run directly atop IP thus cannot traverse most

middleboxes. NAT proliferation has in effect shifted the In-

ternet’s “narrow waist”—the ubiquitous interface atop which

new protocols may be built and reliably deployed—upward to

encompass not just IP but also TCP and UDP [40].

By building new transports atop a shared Endpoint Layer,

middleboxes need to understand only Endpoint Layer and not

Transport Layer headers. Middleboxes can still recognize and

optimize the handling of specific transport protocols if desired,

but doing so is no longer a prerequisite for traversal. The End-

point Layer also provides a clean space for mechanisms al-

lowing hosts to “advertise” endpoints intended to be publicly

reachable, enabling middleboxes to create persistent bindings

for them as policy permits—a demand currently met via ad

hoc, transport-specific mechanisms such as those in UPnP [53].

2.2.3 Negotiation of Alternative Transports

Many application protocols such as RPC and SIP can use

several alternative transports. Every application packet is tra-

ditionally associated with exactly one transport protocol, how-
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Figure 4: Applications can negotiate among several UDP-

based transports with no extra round trips.

ever, via the IP header’s Protocol field. Negotiating which

transport to use for a communication session therefore requires

the initiating application either to use a special transport ex-

change just for this negotiation, or to open new sessions “spec-

ulatively” for each supported transport, only to continue using

the most preferred one that succeeds and shut down the rest.

Building transports atop a shared Endpoint Layer with one

port space, in contrast, leaves transport identification and ne-

gotiation under the application’s control. The Internet already

follows this design philosophy for Session Layer and Presen-

tation Layer functions, leaving their negotiation up to applica-

tions (e.g., HTTP’s persistent streams and content encodings);

our architecture extends this flexibility to the Transport Layer.

Without prescribing specific mechanisms, we suggest one

way an application in our model might combine transport ne-

gotiation with the initial exchange of the selected transport,

avoiding unnecessary round-trips or state setup. The appli-

cation first locally requests from each supported transport a

copy of the “SYN” packet the transport would send to initiate

a new session. The application collects the SYN packets for all

such transports, bundles them together into one “Meta-SYN”

packet, and sends the Meta-SYN to the responding endpoint,

as shown in Figure 4. The responding application breaks apart

the Meta-SYN, passes the SYN for some transport it supports

to its implementation of that transport, and subsequent commu-

nication proceeds normally via that transport. This design as-

sumes that packets for different transports are distinguishable

from each other and from Meta-SYN packets; the application

might interpose a minimal header for this purpose if required.

A side effect of making endpoints transport-independent is

to close the debate over whether to allocate well-known ports

across several transports at once. IANA would need to manage

only one port space, and existing applications could adopt new

transports without having to register new ports for each.

3. THE FLOW REGULATION LAYER

Our Flow Regulation Layer, or simply Flow Layer, manages

the performance of a flow between a pair of endpoints. The

Flow Layer takes the underlying best-effort delivery service,

which typically provides limited information about available

bandwidth and other network characteristics, and builds a flow-

regulated best-effort delivery service, which “knows” how to

regulate the flow of packets for best use of the available path(s).

The Flow Layer implements congestion control [27] and may

encapsulate performance-related mechanisms such as perfor-

Figure 5: An end-to-end path composed of multiple Flow

Layer segments. Flow middleboxes can optimize network

performance based on the properties of a specific segment,

such as a satellite link.

mance enhancing proxies [11], end-to-end multihoming [46],

multipath transmission [33], and forward error correction.

The idea of factoring congestion control into a separate pro-

tocol is embodied in the Congestion Manager (CM) [6] and

Datagram Congestion Control Protocol (DCCP) [28]; these

protocols offer starting points for our Flow Layer, as discussed

in Section 4. Beyond merely factoring out congestion control,

our insight is that the Flow Layer is a clean place to imple-

ment many performance-related mechanisms, enabling them to

benefit many transports, and avoiding interference with trans-

port reliability or end-to-end fate-sharing [16]. The following

sections explore several such performance enhancement tech-

niques: dividing communication paths into segments for per-

formance tuning, utilizing multiple redundant communication

paths, and aggregating flows to improve fairness or efficiency.

3.1 Path Segmentation

Our architecture permits devices in the network, called flow

middleboxes, to interpose on Flow Layer communication by

dividing a path into segments, as shown in Figure 5. Flow mid-

dleboxes “split” the path by terminating one segment’s Flow

Layer connection and initiating a new one for the next seg-

ment. Each segment may consist of several Network Layer

hops; path segmentation does not imply hop-by-hop conges-

tion control [34], although the latter may be viewed as a limit

case of path segmentation.

Flow middleboxes do not touch Transport Layer headers

or payloads, so they are compatible with any transport pro-

tocol. Since flow middleboxes affect only communication per-

formance and not transport semantics, they serve in precisely

the role for which the end-to-end principle [41] justifies such

in-network mechanisms. In contrast with the analogous tech-

nique of TCP splitting [4], where transport state may be lost if

a middlebox fails after acknowledging data received on one

segment but before transmitting it on the next, Flow Layer

splitting preserves end-to-end fate-sharing [16] because flow

middleboxes hold only performance-related soft state.

Motivations for splitting a communication path into indi-

vidually congestion-controlled segments include performance

benefits from reduced RTT, specialization to network charac-

teristics, and administrative isolation. We expore each in turn.

3.1.1 Performance Benefits from Reduced RTT

A TCP flow’s throughput is adversely affected by large round-

trip time (RTT), especially in competition with flows of smaller

RTT [19]. In addition, since information requires one RTT to

propagate around the control loop, any end-to-end congestion
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control scheme’s responsiveness to changing conditions is lim-

ited by RTT. Subdividing a communication path into indepen-

dently congestion-controlled segments reduces each segment’s

RTT to a fraction of the path’s total RTT, which can improve

both throughput and responsiveness. This benefit has been

noted in the context of hop-by-hop congestion control schemes

for packet-switched [34], cell-switched [29], and wireless net-

works [54]. The Logistical Session Layer [48] similarly lever-

ages this effect to improve wide-area grid performance. Our

Flow Layer thus provides a semantically clean way to obtain

the benefits of shorter RTTs within segmented paths.

3.1.2 Specialization to Network Characteristics

The best congestion control scheme for a communication

path often depends on the characteristics of the underlying net-

work [8]. Classic TCP congestion control [27] performs well

on wired LANs and the Internet core, but poorly on networks

that are loss-prone due to transmission errors or mobility, and

on long-delay connections such as satellite links or wireless

wide-area networks. Since integrating diverse networks is a

fundamental goal of the Internet [16], we must assume that

any communication path may traverse several network types,

each of which might place conflicting requirements on any sin-

gle end-to-end congestion control scheme. New end-to-end

schemes are available for high-bandwidth, long-delay links [20],

and others for mobile ad hoc networks [31], but will any one

scheme perform well on a path that includes links of both types

(and others)? Path segmentation in the Flow Layer provides a

clean method of specializing congestion control to the charac-

teristics of individual path segments while avoiding the pitfalls

of traditional performance enhancing proxies [11].

Other fixes are available for specific performance issues [5],

but we feel that none of them solves the general network path

heterogeneity problem. A “sledgehammer approach” is to open

parallel TCP streams over one path, either at transport [44] or

application level [2], boosting throughput at the cost of fairness

by amplifying TCP’s aggressiveness [21]. TCP snooping [7]

enables intermediate nodes to retransmit lost packets and sup-

press duplicate acknowledgments without violating TCP’s se-

mantics, but this technique is transport-specific and does not

allow adjacent segments to run independent congestion control

schemes. Many approaches assume that only the “last hop” of

a path requires specialization—an assumption violated by im-

portant scenarios such as wireless mesh networks [1]. In con-

trast, our architecture supports any number of segments and

permits independent performance tuning of each.

3.1.3 Administrative Isolation

Even where one end-to-end congestion control scheme may

be technically adequate, the Internet’s inertia makes it polit-

ically difficult to agree on, evolve, and deploy new end-to-

end schemes. Any new scheme encounters resistance unless

it is “TCP-friendly”—no more aggressive than TCP Reno—

since the new scheme’s flows will compete with Reno streams

“in the wild.” But since the Internet does not enforce TCP-

friendliness [21], selfish or unaware users can and do deploy

unfairly aggressive mechanisms anyway—e.g., in the form of

TCP-unfair UDP flows [15] or concurrent TCP flows [30].

Figure 6: Flow Layer multipath communication example.

The multihomed hosts use two end-to-end paths, one pass-

ing through a pair of middleboxes implementing an in-

network multipath segment.

Path segmentation offers an incremental solution to conges-

tion control evolution: split the Flow Layer path at administra-

tive boundaries, and deploy the new scheme only on segments

traversing domains in which the scheme has been adequately

tested and approved, preserving TCP-friendliness on other seg-

ments. Path segmentation allows network administrators to roll

out a new scheme one administrative domain at a time, and ho-

mogenize the congestion control algorithms used within their

domain if desired, ensuring that the new scheme’s flows com-

pete only with each other within the domain and not with Reno

flows or other arbitrary schemes deployed by end hosts.

Even for end-to-end streams not conforming to our archi-

tecture—e.g., flows with congestion control in the Transport

Layer or no congestion control at all—homogeneous conges-

tion control can still be enforced within a domain if needed,

by encapsulating such streams in a Flow Layer “tunnel” while

crossing that domain. Our architecture thus provides a clean

framework for proposed mechanisms that use per-flow state at

border routers to implement new congestion control schemes

within a domain [47], or to enforce TCP-friendliness [39] or

differential service agreements [24].

3.2 Multipath Communication

There are many ways to exploit alternative network paths to

improve reliability [23], balance load [36], or enhance secu-

rity [32]. To be deployable, however, a multipath scheme must

be compatible with upper layer protocols designed assuming

single-path routing, and must remain interoperable with single-

path routing domains. Our architecture addresses these deploy-

ment issues by permitting end hosts and flow middleboxes to

implement multipath communication end-to-end or in the net-

work, as shown in Figure 6.

3.2.1 Flow Layer Multihoming

The Flow Layer provides a clean place to implement end-

to-end multihoming: binding several endpoints together to pro-

vide multiple paths over the existing routing infrastructure. In

contrast with transport multihoming [33, 46], multihoming in

the Flow Layer can benefit any transport without interfering

with transport semantics. An address rewriting mechanism

similar to shim6 [43] in the Flow Layer can make all of a host’s

endpoints appear as one to these transports.

Path segmentation in our architecture can also facilitate the

incremental deployment of multipath routing. A multipath rout-

ing protocol may be deployed within an administrative do-

main, surrounded by flow middleboxes that can exploit avail-

88



Figure 7: Flow Layer aggregation example containing two

end-to-end flows, which appear as one flow to the interme-

diate network.

able paths in flow segments crossing that domain, without af-

fecting external segments (see Figure 6). Alternatively, or si-

multaneously, a multi-site organization might deploy flow mid-

dleboxes at site boundaries to distribute inter-site traffic across

redundant wide-area links.

3.2.2 Coping with Path Diversity in Upper Layers

Naı̈vely distributing packets among multiple paths with vary-

ing delay, whether end-to-end or in-network, can confuse the

congestion control and reliability mechanisms of existing trans-

ports [10]. In our architecture, a multihomed Flow Layer can

avoid this confusion by implementing per-path congestion con-

trol, but the Transport Layer remains responsible for retrans-

mission and thus vulnerable to similar confusion. To support

arbitrary transports, therefore, a multihomed Flow Layer needs

to preserve the illusion of single-path delivery, either by using

only one path at once as SCTP does [46], or through order-

preserving traffic dispersion [23].

Multipath-aware transports [26] and applications [3] can ben-

efit from the ability to maintain per-path state and explicitly

associate packets with paths. Through a simple path index-

ing mechanism inspired by path splicing [35], which we do

not elaborate here for space reasons, a multipath Flow Layer

in our architecture can expose alternative paths to upper layer

protocols capable of using them, while retaining compatibility

with multipath-oblivious protocols.

3.3 Flow Aggregation

Finally, the Flow Layer provides a clean point at which to

aggregate related flows when desired, so that the intervening

network treats the aggregate as one flow (see Figure 7). Flow

aggregation can provide several benefits including reuse of con-

gestion control state and improved fairness.

3.3.1 Reuse of Congestion Control State

Since an aggregate of many transport instances is typically

longer-lived and represents more traffic than any of its con-

stituents, measurements of the aggregate’s characteristics can

benefit from a longer history and more samples. Transport ex-

tensions have been proposed to aggregate congestion control

state across reincarnations of one transport session [12], across

concurrent sessions [51], across transport protocols [6], and

across hosts in an edge network [55].

Placing optimizations such as these in the Flow Layer al-

lows arbitrary transports to benefit from them, and permits ag-

gregation to be performed cleanly within the network as well

as end-to-end. In our architecture, for example, a flow mid-

dlebox can aggregate congestion control state across the hosts

in an edge network and use that information to optimize flows

crossing that middlebox transparently, without requiring end

host modifications as in TCP/SPAND [55].

3.3.2 Fairness Control

TCP’s per-stream “fairness” notion often fails to match the

expectations of users and network operators [13]; Flow Layer

aggregation may be useful to implement higher-level fairness

policies. For example, an ISP may want each customer to get

equal bandwidth at bottlenecks in its network, regardless of

whether a customer uses few transport instances (web brows-

ing, SSH) or many (BitTorrent). To implement such a pol-

icy, the ISP could deploy flow middleboxes at its borders that

aggregate all segments crossing its network into one “macro-

flow”: since each macro-flow has one congestion control con-

text, each macro-flow gets an equal share of congestion bot-

tleneck bandwidth. Most such macro-flows will connect one

customer’s access router to one of a few upstream network at-

tachment points, so this meta-flow fairness should approximate

a per-customer fairness policy. Flow aggregation can thus im-

plement policies similar to those motivating hierarchical fair

queuing schemes [9], without changing interior routers.

4. IMPLEMENTATION AND EVOLUTION

One of the benefits of the proposed architecture is that exist-

ing protocols already provide starting points for implementing

its new layers. Since these existing protocols were designed in

the traditional architectural framework, however, the fit is not

perfect, so further development will be needed.

• Endpoint Layer: UDP [38] provides a pervasive first ap-

proximation to our Endpoint Layer. Viewing UDP not as

transport but as implementing a common endpoint space to

be shared by all (new) transports, it becomes worthwhile

to consider evolving this shared endpoint space, to sup-

port larger port numbers or service names for instance [52].

Also needed are extensions enabling NATs and firewalls

to detect which endpoints within a private network are in-

tended to be publicly reachable, and create persistent bind-

ings for them as policy permits. Our intent is for the End-

point Layer to provide these services, with incremental de-

ployment facilitated by dual-stack Endpoint Layer gateways

that map between UDP and the new Endpoint Protocol.

• Flow Regulation Layer: Both DCCP [28] and CM [6]

approximately implement our Flow Layer, and each has

unique features we would like to see combined in one pro-

tocol. CM offers aggregation of congestion control state

across flows and a packet transmission API that facilitates

application-layer framing (ALF) [17], whereas DCCP pro-

vides explicit negotiation of congestion control schemes.

We also need to examine how to reposition them atop the

Endpoint Layer, and to develop extensions supporting Flow

Layer optimizations such as path segmentation, multipath

communication, and flow aggregation.

• Transport Layer: Finally, new Transport Layer protocols

will build upon the Flow Layer to offer communication ab-

stractions such as reliable byte streams [49], reliable data-
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grams [37], media frames [42], multi-streams [46], or struc-

tured streams [22]. We need to consider how to reposi-

tion transports atop the Flow Layer in an incremental and

backward-compatible way, and how the absence of conges-

tion control in the Transport Layer may impact transport

mechanisms such as (fast) retransmit and receive window

control.

5. CONCLUSION

Although the OSI protocol stack has been dead for years,

its layering model remains the standard frame of reference for

the Internet, and aspects of its layering model have created se-

rious roadblocks to Internet evolution. By factoring endpoint

addressing into a common Endpoint Layer instead of distribut-

ing it among transports as in OSI, we obtain more flexibility in

transport implementation and deployment, transport-oblivious

firewall/NAT traversal, and more efficient transport negotia-

tion. Similarly, by factoring congestion control into an inter-

mediate Flow Layer, we decouple performance-oriented flow

regulation from transport semantics, enabling the clean, mod-

ular, and incremental deployment of a host of performance op-

timizations both end-to-end and in the network, without inter-

fering with transport reliability or fate-sharing. The new ar-

chitectural model therefore appears promising, although many

protocol details remain to be worked out.

Our model may appear to make the Internet architecture

more complex, but we believe this complexity has already been

forced upon us via the patchwork of interposers that have pro-

liferated across the Internet [11, 25]. Our proposal provides a

framework in which to fit these interposers together cleanly,

recognizing and satisfying the needs that have led to the preva-

lence of these middleboxes. This project is ambitious, and

many unresolved issues remain, such as NAT traversal details,

buffering issues in flow middleboxes, APIs and interfaces be-

tween the new layers, and cross-layer dependencies. We hope

to resolve these issues as we work out mechanisms and proto-

cols to implement the new architecture.
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Abstract
It is well known that BGP convergence can cause
widespread temporary losses of connectivity resulting
from inconsistent routing state. In this paper, we present
Anomaly-Cognizant Forwarding (ACF) - a novel tech-
nique for protecting end-to-end packet delivery during pe-
riods of convergence. Our preliminary evaluation demon-
strates that ACF succeeds in eliminating nearly all tran-
sient disconnection after a link failure without the use of
precomputed backup routes or altering the dynamics of
BGP.

1 Introduction
It is widely known that BGP, the core Internet interdo-
main routing protocol, is susceptible to temporary con-
nectivity failures during periods of convergence. A single
event, such as a link failure or a policy change, can trig-
ger a lengthy and complex sequence of route recomputa-
tions, during which neighboring ASes exchange updates
and converge on a new globally-consistent set of routes.
During this process, routers operate upon potentially in-
consistent local views, which can lead to the emergence of
temporary anomalies such asloopsandblackholes. Both
of these are considered undesirable, as they result in tem-
porary losses of connectivity to the set of destinations af-
fected by the event.

In order to prevent explosive growth of control traffic
during the convergence process, BGP routers are typically
configured to constrain the maximum rate of update prop-
agation via the MRAI timer and [1] recommends setting
its value to 30 seconds. Inevitably, limiting the rate of
update dissemination lengthens the period of exposure to
routing anomalies and several studies have reported pro-
longed and noticeable bursts of packet loss caused by
BGP convergence. It has been shown that a single route
change can produce up to 30% packet loss for two min-
utes or more [9]. Further, [15] reports loss bursts that last
up to 20 seconds after a single route failure and up to 8
seconds after a route recovery event.

Today’s Internet applications such as online games,
streaming video delivery, and VoIP demand continu-
ous end-to-end reachability and consistent performance.
Hence, this problem has received considerable research

attention and previous approaches can be broadly catego-
rized into (a) those that attempt to expedite protocol con-
vergence [3, 12] and (b) those that seek to protect end-
to-end packet delivery from the adverse effects of con-
vergence. It has been suggested that mechanisms in the
former category face an inherent limitation given the cur-
rent scale of the Internet on the one hand and stringent
demands of today’s applications on the other. A scalable
policy-based routing protocol that converges fast enough
for applications such as interactive voice delivery still re-
mains an elusive goal.

The second category of proposals includes mechanisms
such as R-BGP [8], which advocates the use of precom-
puted failover paths for ensuring connectivity during peri-
ods of convergence. This scheme offers provable guaran-
tees of reachability for single link failures, but these guar-
antees come at the cost of additional forwarding state and
protocol complexity associated with the maintenance of
backup routes and ensuring loop-free convergence. Fur-
ther, preserving connectivity in the face of multiple con-
current routing events would require routers to compute
and maintain additional link-disjoint paths and the for-
warding state requirements would present a serious scala-
bility challenge.

Most recently, Consensus Routing [7] proposes to ad-
dress transient disconnectivity by requiring BGP routers
to agree on a globally-consistent "stable" view of forward-
ing state. In this context, stability means that a source
domain can adopt a route to some destination in a given
epoch only if each of the intermediate routers on the
path adopts the respective route suffix in the same epoch,
which guarantees absence of loops. In each epoch, routers
participate in a distributed snapshot and consensus proto-
col in order to identify the set of "complete" BGP updates
that satisfy stability. In contrast to much of prior work
directed at reducing the duration of convergence, this
scheme intentionally delays the adoption of BGP updates,
so as to preserve the stability invariant. In the absence of
a stable forwarding path, consensus routing fails over to
a transient forwarding mode that implements a heuristic
such as detouring, backtracking, or backup paths.

In this paper, we presentAnomaly-Cognizant For-
warding (ACF) - a new and complementary approach to
improving Internet path availability and reducing tran-
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sient disconnection. Rather than attempting to eliminate
anomalous behavior by enforcing global consistency or
shrinking the convergence time window, we accept incon-
sistent routing state as an unavoidable fact and instead
develop a mechanism fordetectingandrecoveringfrom
such inconsistencies on the data path. While much of
prior work has focused on extending BGP to improve its
consistency and convergence properties, in this paper we
consider a somewhat more disruptive approach that in-
volves adding several fields to the packet header and in-
specting them on the forwarding path. Our main hypothe-
sis is that a single nearly trivial extension to conventional
IP forwarding suffices to eliminate a dominant fraction of
convergence-related disconnectivity. Our approach does
not require routers to maintain multiple forwarding tables,
nor does it require extending BGP or altering its timing
dynamics.

2 Approach Overview
In broad terms, we view inconsistent BGP state and
routing anomalies as unavoidable facts and approach the
problem by extending the forwarding plane with a small
amount of functionality that enables us to detect and re-
cover from these anomalies. Toward this end, we aug-
ment the packet header with two additional pieces of state.
First, a packetp originating inASs and destined toASd

carries apath trace(denotedp.pathTrace) - a list of AS-
level hops encountered byp on its path towardASd. At
each hop, the border router inspects this field and appends
its own AS identifier. The content of this field enables
routers to detect and recover from occurrences of loops
via a process that we describe more fully below. Second,
each packet carries ablack list(denotedp.blackList) con-
taining an encoding of AS identifiers that are known to
have possesseddeficientrouting state forp’s destination
at some point after packet’s origination.

We say that a transit domainASt hasdeficientrouting
state for a destinationASd at a particular instant in time if
at that instant (a)ASt lacks a valid policy-compliant path
to ASd, or (b) the path adopted byASt for destinationASd

results in a routing loop that causes packets to return back
to ASt .

At a high level, ACF packet forwarding proceeds as fol-
lows: a router first inspectsp.pathTraceand checks it for
the presence of its local AS identifier, which would indi-
cate a loop. If no loop is detected, the packet is forwarded
as usual along the adopted route. Otherwise, the loop is
viewed as evidence of deficient state and the router acts
upon it by moving every AS identifier belonging to the
loop (which it knows fromp.pathTrace) to p.blackList
and invoking the control plane, where the RIB is searched
for the presence of alternate paths that do not traverse any
of the blacklisted domains.

The second core component of our design is an alter-
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Figure 1:A sample AS topology with a transient loop.

nate mode of packet delivery, which we termrecovery
forwarding. This mode helps ensure connectivity in situa-
tions where a router is unable to forward a packet because
it does not possess a valid non-blacklisted path.

Forwarding in recovery mode is facilitated by a set of
recovery destinations. When a transit router chooses to
initiate recovery forwarding for a packetp, it adds the lo-
cal AS identifier top.blackList, copiesp’s destination ad-
dress to an alternate location in the header, and redirects
the packet to the address of some recovery destination,
chosen at random from a well-known static set of poten-
tial destinations. In our current design and simulations,
we assign the recovery destination role to a group of 10
well-connected Tier-1 ISPs1.

The basic intuition that motivates this scheme is that
the chosen recovery destinationASr (or some intermedi-
ate router along the path toASr ) is likely to possess a
valid non-blacklisted route to packet’s original destina-
tion. As the packet travels towardASr in recovery mode,
each router on the path first attempts to forward it to the
original destinationASd. If a usable non-blacklisted path
is known, the router takes the packet off the recovery path
and resumes normal-mode forwarding. Otherwise, the
packet is sent to the next hop for destinationASr . If, af-
ter reaching the recovery destination, the packet cannot be
taken off the recovery path becauseASr does not possess a
usable route toASd, the packet is dropped. Alternatively,
in an effort to ensure eventual delivery,ASr can re-initiate
recovery forwarding via another destination. In the latter
scenario, the process repeats until (a) the packet is taken
off the recovery path by some destination that knows a
working route toASd, (b) the packet is dropped because
no recovery destination has such a route, or (c) the packet
is dropped because its TTL expires.

We illustrate our scheme using the AS topology in Fig-
ure 1. Suppose that initially, domainsC andD both use
B as the next hop for destinationA. In this example, fail-
ure of the inter-AS link〈A−B〉 would causeB to send

1Internet service providers can offer recovery forwarding as a paid
service for customers that wish to safeguard themselves from BGP-
related connectivity failures.
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a withdrawal notification to its neighbors. Upon receiv-
ing the withdrawal,C andD would immediately switch to
alternate paths〈D → B→ A〉 and〈C→ B→ A〉, respec-
tively. With conventional BGP, domainC has no way of
determining that the newly-adopted path is invalid until it
receives a withdrawal fromD and, analogously,D consid-
ers〈C → B → A〉 to be a valid route and adoptsC as its
next hop, thus causing a transient loop to emerge.

Suppose that domainC wishes to send a packet to an
address in domainA. With ACF, packet forwarding pro-
ceeds as follows: Initially,C adds its local AS identifier
to p.pathTraceand forwards the packet to its next hop
- domainD. Upon receiving the packet,D appends its
identifier top.pathTraceand sends the packet back toC,
which inspectsp.pathTraceand detects a loop. It trun-
catesp.pathTraceand, for each non-local AS identifier
belonging to the loop (in this example onlyD), adds a
corresponding entry top.blackList. Next, C reattempts
to forward the packet, this time avoiding the blacklisted
forwarding table entry and discarding the corresponding
route. In the example shown,C has no alternative working
routes for destinationA, so it adds itself top.blackListand
invokes recovery forwarding, choosing domainF as the
recovery destination.C forwards the packet in recovery
mode toE (its next hop forF) and the packet arrives with
p.pathTrace= 〈C〉, p.blackList= 〈C,D〉. Upon receiv-
ing the packet,E first attempts to forwardp to its original
destination (A), but discovers that both its current next hop
(C) and the alternate path throughD are blacklisted in the
packet’s header and discards the respective routes. Lack-
ing other alternate paths,E adds itself top.blackListand
forwards the packet further along the recovery path to its
peerF. Analogously,F determines from the blacklist that
its next hopE does not posses a valid path and purges the
respective route from its RIB. However,F knows of an
alternate working route〈G→ A〉 and adopts it, causingp
and all subsequent packets destined toA to be forwarded
via G. Eventually, BGP path withdrawals will propagate
through the topology and reachF, causing it to expose
〈F → G → A〉. During the transient period of inconsis-
tency, however, thepathTraceandblackList state being
propagated on the data path enables us to discover a valid
alternate route and preserve end-to-end packet delivery.

Before we proceed to a detailed description of the de-
sign, we make two high-level observations about our ap-
proach. First, since ACF utilizes two distinct modes of
forwarding (i.e.,normalandrecoverymodes), it can cause
some packets to traverse multiple distinct paths to the des-
tination during periods of convergence. For example,ASs

may initially attempt to send a packet toASd via a pathP1,
but one of the intermediate hops may decide to re-route
it via a recovery destination, which, in turn, can choose
to forward the packet viaP2 - an alternate path toward
ASd that is link-disjoint fromP1. Unlike earlier work on

failover BGP paths [8], our mechanism does not require
routers to construct an explicit set of backup routes and
to maintain multiple forwarding table entries. In ACF, the
two modes make use of the same forwarding table and
we try todiscoverhealthy alternate paths dynamically by
extending the forwarding plane.

Second, we do not assume that the set of paths to re-
covery destinations is stable and that every AS possesses
a working loop-free route to some recovery destination
at all times. Indeed, certain failure scenarios (e.g, a core
link failure) can result in disruption of paths to multiple
endpoints, including those that serve as recovery desti-
nations, and clearly, our design must succeed in retain-
ing end-to-end connectivity in the face of such failures.
Thankfully, there is a simple and effective solution that
enables us to handle such cases - we protect recovery-path
forwarding against routing anomalies using precisely the
same mechanism that we use to safeguard packet delivery
on the normal forwarding path, i.e., using thepathTrace
andblackListfields in the packet header.

3 The Design of ACF

3.1 Packet header state
ACF adds the following fields to the packet header:

recoveryMode: A single-bit flag indicating the current
forwarding mode (normalor recovery).

f inalDestAddr: In recovery mode, this field carries the
packet’s actual destination address (i.e., its destina-
tion prior to redirection).

pathTrace: An ordered list of AS-level hops traversed by
the packet in the current forwarding mode.

blackList: A set of AS identifiers that are known to pos-
sess deficient routing state for the packet’s original
destination.

blackListRecov: A set of AS identifiers that are known to
possess deficient routing state for the packet’s desig-
nated recovery destination.

In our current design,pathTraceis represented as a
linear list of 16-bit AS numbers, whileblackList and
blackListRecovand represented using a space-efficient
Bloom filter encoding (note that AS identifiers are never
removed from blacklists).

3.2 Forwarding algorithm
When a packetp arrives at a router, itsrecoveryMode
flag is inspected to determine the appropriate forwarding
mode. In the normal mode, the router first checks the
pathTracefield for the presence of its local AS number.
If a loop is detected, all AS components of the loop are
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added top.blackListand the path trace is truncated to ex-
clude the loop. Next, the forwarding table is consulted to
obtain the next hop forp’s destination and the content of
p.blackList is inspected. If the next-hop AS is present in
p.blackList, the current route is discarded and the control
plane (FindAlternateRoute) is invoked to find and install
an alternate non-blacklisted route.

In FindAlternateRoutethe standard BGP route se-
lection process is invoked to identify a new preferred
path and, crucially, all blacklisted routes are excluded
from consideration during this process. We investi-
gated and evaluated two alternative methods for decid-
ing whether to exclude a particular candidate routeR =
〈ASR

1 ,ASR
2 , ...ASR

k 〉 for a given packetp:

1. ExcludeR iff ASR
1 ∈ p.blackList.

2. ExcludeR iff ∃i such thatASR
i ∈ p.blackList.

Consider a scenario, in whichASs knows of two distinct
routes toASd, namely〈AS1 → AS2 → ASd〉 and〈AS3 →

AS2 → ASd〉. Initially, it tries to forward the packet via
AS1, but the packet returns with〈ASs,AS1,AS2,AS4〉 in its
pathTrace, causingASs to blacklistAS1, AS2, andAS4.
With method 1,ASs would next attempt to forward via
AS3, but this would result in wasted effort ifAS3 does not
know of any alternate paths toASd that do not go through
AS2. Conversely, scheme 2 would requireASs to discard
its path throughAS3 and invoke recovery forwarding due
to absence of other alternatives. In this situation, skipping
AS3 can result in a lost opportunity to forward via an ef-
ficient alternate route ifAS3 does indeed possess such a
route.

We examined both alternatives and found that the sec-
ond method is substantially more effective in reducing
transient packet loss for the set of failure cases we con-
sidered. It allows problematic paths to be detected and
discarded more quickly and reduces the number of hops
it takes for a packet to home in on a valid alternate route.
Note that as a further optimization, we could also evalu-
ate the criterion of method (2) on the data path (currently,
we check only the next hop), but this improvement would
come at the expense of additional processing overhead
and forwarding state. Hence, our current design adopts
a compromise by validating only the next hop on the data
plane and performing full AS-PATH inspection only upon
evidence of anomalous behavior.

If FindAlternateRoutefails to identify a working route,
recovery forwarding is invoked. The router adds its lo-
cal AS number top.blackList, clearsp.pathTraceand
p.blackListRecov, chooses a non-blacklisted recovery
destination, and looks up the corresponding next hop. For-
warding in recovery mode proceeds analogously and we
refer the reader to [5] for additional details and pseu-
docode.

4 Preliminary Evaluation
The preliminary evaluation we present in this section fo-
cuses on addressing three key questions: (1) How effec-
tive is ACF at sustaining end-to-end connectivity during
convergence? (2) In the absence of precomputed backup
routes, how long does it take to recover a packet from an
anomalous path and find an alternate working route? (3)
How significant is the header overhead incurred by ACF?

Methodology: To answer these questions, we imple-
mented an event-driven parallel simulator that enables us
to study the dynamics of BGP convergence in realistic
Internet-scale AS topologies and simulate packet forward-
ing at an arbitrary point in time during convergence. Our
initial experiments examine the effects of inter-AS link
failures on end-to-end reachability and focus on failures
of access links that connect to a multi-homed edge do-
main. We use the CAIDA AS-level topology from May
12, 2008 [2] annotated with inferred inter-AS relation-
ships. The topology contains 27969 distinct ASes and
56841 inter-AS links. Following standard convention,
our simulator implements "valley-free" route propagation
policies [6] and customer routes are always preferred over
peer and provider routes.

The topology includes 12937 multihomed edge ASes
and a set of 29426 adjacent provider links. We conduct a
failure experiment for each provider link〈ASp−ASd〉 in
this set. We begin by simulating normal BGP convergence
that results in adoption of consistent policy-compliant
paths toward the destinationASd. Next, we fail its link
to ASp, simulate packet forwarding from each AS toASd

during the period of reconvergence, and identify the set
of ASes that experience temporary loss of connectivity
to ASd during this period. With traditional forwarding,
a source domain is considered disconnected if an interme-
diate router on its path toASd drops a packet because it
does not possess a route or if the packet’s TTL (initially
set to 32 hops) expires, indicating a forwarding loop. With
ACF, a domain is disconnected if its packet is dropped at
the recovery destination and upon TTL expiration.

Transient disconnection after link failures: As ex-
pected, we found that BGP with conventional forwarding
exhibits a substantial amount of transient disconnectivity.
51% of failures cause some of the ASes to experience con-
nectivity loss and 17% of failures cause at least half of all
ASes in the topology to lose connectivity. Figure 2 plots
the fraction of disconnected domains for the cumulative
fraction of failure cases and demonstrates the effective-
ness of ACF. In 84% of failure cases that produce some
disconnectivity with conventional forwarding, ACF fully
eliminates unwarranted packet loss and further, in 96% of
such cases no more than 1% of all ASes experience dis-
connection. The figure also illustrates that recovery for-
warding plays a pivotal role in protecting packet delivery
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Figure 2: Prevalence of transient disconnection after a single
provider link failure. The x-axis denotes the fraction of failure
cases that cause some disconnectivity with traditional forward-
ing.
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Figure 3:Average path dilation with ACF.

and ensuring connectivity in the face of anomalies. For a
small fraction of failure cases (0.2%), our scheme offers
little or no measurable improvement, leaving over 90%
of the topology disconnected, and further inspection re-
vealed that in most of these cases packets fail to discover
a working route within 32 hops.

Path efficiency: By not maintaining a precomputed set
of efficient alternate routes and instead letting packets
discover them dynamically, our scheme can increase the
number of hops a packet traverses during periods of in-
stability. This overhead can be attributed to the fact that
packets can encounter loops and that finding a working
path can require detouring via a recovery destination. We
measured this overhead in the above experiment and Fig-
ure 3 plots the path dilation (averaged over all ASes) for
the cumulative fraction of failure cases. This quantity is
computed by subtracting the length of the final route (in
AS hops) adopted after reconvergence from the length of
the longest path a packet would have to traverse under
ACF before reaching its destination. In 65% of failures
that cause loss under traditional forwarding, ACF recov-
ers packets using no more than two extra AS hops and
only 9% of failures incur the cost of 7 hops or more.

Packet header overhead: Table 1 shows the maxi-
mum number of entries in thepathTraceandblackList

% disconnected 0% 0.09% 0.9% 9% 90%

pathTracelen. 11 16 16 20 13
blackList len. 4 11 9 11 16

Table 1:Maximum number ofpathTraceandblackListentries
in a representative sample of failures cases.

ACF header fields for a representative sample of fail-
ure cases corresponding to 0%, 0.09%, 0.9%, 9%, and
90% transient disconnection with ACF2. In the worst case,
pathTraceconsumes 40 bytes assuming that each en-
try is a 16-bit AS number. Up to 16 entries are added
to blackList and a Bloom filter representation with 1%
lookup error rate would require 10 bytes.

In summary, our initial evaluation suggests ACF to be
a promising approach that significantly reduces transient
packet loss and incurs reasonable bandwidth and latency
overheads. However, the results presented here are only a
first step toward understanding its full behavior in a com-
plex Internet-scale environment and future work will in-
clude evaluating ACF under a broader range of scenarios
that include failures of transit links, multiple concurrent
failures, link recovery, and BGP policy changes.

5 Discussion and Future Work
Feasibility of deployment: ACF introduces several
changes to the core mechanisms of IP forwarding and can
thus be seen as facing a substantial barrier to adoption.
More concretely, ACF requires adding several fields to the
packet header, as well as introducing additional logic on
the forwarding path. While clearly non-trivial, we believe
that packet format issues can be addressed via the use of
IP options and/or shim headers. Investigating these issues
in detail and proposing a viable path toward deployment
are two essential topics of future work.

Packet processing overhead: Our scheme adds com-
plexity and computational overhead to the forwarding
plane. We note thatFindAlternateRoute- the most signif-
icant source of overhead in ACF - is invoked only during
periods of instability and only for the purpose of replac-
ing a broken route whose continued usage would other-
wise result in packet loss. In the common case, the over-
head reduces to checkingblackListandpathTracefor the
presence of the local AS number - operations that incur
the cost of a single Bloom filter lookup and a linear scan,
respectively. Both operations admit efficient implementa-
tion in hardware and parallelization. Finally, if the cost
of a vector scan at each hop is deemed unacceptable, loop
detection and recovery can be deferred until TTL expira-
tion and handled at the control plane.

2recovBlackListis not shown because recovery destination paths re-
main stable in this experiment.
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ACF and routing policies: Due to recovery forward-
ing, packets in ACF can be forwarded along a path which
violates ISP export policies when viewed from an end-to-
end perspective. At the same time, each individual for-
warding decision in ACF respects policies by considering
only the set of exported routes available in the RIB. In
particular, only policy-compliant paths are used in recov-
ery mode to guide a packet toward a recovery destination.
ACF envisions the emergence of a new inter-ISP relation-
ship landscape, where a group of highly-connected Tier-1
networks would provide the recovery destination service
to multihomed clients that wish to safeguard themselves
from the adverse effects of routing convergence. Viewed
in this manner, our scheme can be said to provide policy-
compliant forwarding via an intermediate destination.

6 Related Work
The adverse side-effects of BGP convergence have been
studied extensively through measurements and simula-
tions [9,10,13,15]and prior work on addressing this prob-
lem includes a family of protocol extensions and heuris-
tics for accelerating convergence [3,4,14].

Another set of techniques, to which our scheme be-
longs, focuses on protecting end-to-end packet deliv-
ery from the unwanted effects of convergence and re-
cent work in this area includes Resilient BGP [8] and
Consensus Routing [7]. Analogously to both schemes,
ACF implements two logically distinct modes of forward-
ing, which are differentiated using an extra bit in the
packet header. R-BGP advocates the use of precom-
puted failover paths and requires routers to maintain mul-
tiple forwarding table entries for some destinations. To
achieve loop-freeness, R-BGP introduces an assumption
regarding route selection preferences and augments BGP
update messages with root cause information. In con-
trast, our scheme works with general preference policies
and requires no changes to the routing protocol, but does
not offer provable guarantees of reachability. Consensus
Routing ensures loop-freedom by enforcing a globally-
consistent view of forwarding state, achieved by strategi-
cally delaying the adoption of BGP updates. Several tran-
sient forwarding modes are used to provide high availabil-
ity and our approach borrows the idea of detouring via a
highly-connected domain. Consensus Routing also modi-
fies the forwarding path and the per-hop packet encapsu-
lation used in the backtracking transient mode is concep-
tually analogous to ACF’spathTrace. Our main insight
is that carrying the list of prior hops on the data path also
provides the ability to detects loops and thus, global con-
sistency is extraneous if packets can be recovered from
loops and redirected via a reasonably efficient path. Con-
sensus Routing delays the adoption of new routes by up
to several minutes which, in certain scenarios, can have
an adverse effect on end-to-end reachability.

Failure-Carrying Packets [11] is a recent proposal for
link-state protocols that protects end-to-end delivery by
augmenting packets with information about link failures.
ACF adopts an analogous approach, but focuses on in-
terdomain policy routing. We compared ACF with the
strawman design for path-vector FCP presented in [11]
and found that FCP improves end-to-end path availabil-
ity for only a fraction of failure cases, demonstrating an
improvement comparable to ACF without recovery-mode
forwarding. Compared to FCP, our scheme does not re-
quire routers to precompute and cache a set of alternate
forwarding table entries and incurs a smaller per-packet
processing overhead (control-plane path reselection is in-
voked much less frequently). A detailed performance
comparison with FCP is a topic of future work.

7 Acknowledgments
We are grateful to Philip Brighten Godfrey for his insight-
ful comments on earlier versions of this paper and the
anonymous reviewers for their valuable and constructive
feedback.

References
[1] A border gateway protocol 4 (BGP-4).http://www.ietf.

org/rfc/rfc4271.txt.
[2] CAIDA inferred AS relationships dataset. http://www.

caida.org/data/active/as-relationships/.
[3] BREMLER-BARR, A., AFEK, Y., AND SCHWARZ, S. Improving

BGP convergence via ghost flushing. InINFOCOM’03.
[4] CHANDRASHEKAR, J., DUAN , Z., ZHANG, Z. L., AND

KRASKY, J. Limiting path exploration in BGP. InINFOCOM’05.
[5] ERMOLINSKIY, A., AND SHENKER, S. Reducing transient dis-

connectivity using anomaly-cognizant forwarding. Tech. Rep.
UCB/EECS-2008-120, EECS Department, University of Califor-
nia, Berkeley, Sep 2008.

[6] GAO, L., AND REXFORD, J. Stable internet routing without
global coordination. InSIGMETRICS’00.

[7] JOHN, J. P., KATZ-BASSETT, E., KRISHNAMURTHY, A., AND

ANDERSON, T. Consensus routing: The internet as a distributed
system. InNSDI’08.

[8] K USHMAN, N., KANDULA , S., KATABI , D., AND MAGGS, B.
R-BGP: Staying connected in a connected world. InNSDI’07.

[9] L ABOVITZ , C., AHUJA, A., BOSE, A., AND JAHANIAN , F. De-
layed internet routing convergence. InSIGCOMM’00.

[10] LABOVITZ , C., AHUJA, A., AND JAHANIAN , F. Experimental
study of internet stability and backbone failures. InFTCS’99.

[11] LAKSHMINARAYANAN , K., CAESAR, M., RANGAN , M., AN-
DERSON, T., SHENKER, S., AND STOICA, I. Achieving
convergence-free routing using failure-carrying packets. In SIG-
COMM’07.

[12] LUO, J., XIE, J., HAO, R.,AND L I , X. An approach to accelerate
convergence for path vector protocol. InGLOBECOM’02.

[13] MAO, Z. M., GOVINDAN , R., VARGHESE, G.,AND KATZ , R. H.
Route flap damping exacerbates internet routing convergence. In
SIGCOMM’02.

[14] PEI, D., AZUMA , M., MASSEY, D., AND ZHANG, L. BGP-RCN:
improving BGP convergence through root cause notification.Com-
put. Netw. ISDN Syst. 48, 2 (205), 175–194.

[15] WANG, F., MAO, Z. M., WANG, J., GAO, L., AND BUSH, R. A
measurement study on the impact of routing events on end-to-end
internet path performance. InSIGCOMM’06.

6

96



Pathlet Routing

P. Brighten Godfrey, Scott Shenker, and Ion Stoica
{pbg,shenker,istoica}@cs.berkeley.edu

University of California, Berkeley

ABSTRACT

Source-controlled multipath routing can be highly beneficial
to both sources and to network providers. For a source, the
flexibility to choose among multiple paths can improve re-
liability and path quality. To a network provider, source-
controlled routing could be a salable service. Unfortunately,
the Internet’s interdomain routing protocol, BGP, offers no
multipath routing mechanism. Several proposals offer mul-
tiple paths, but are limited in the paths they can expose.

This paper introduces a new scheme, pathlet routing, in
which networks advertise fragments of end-to-end paths
from which a source can assemble an end-to-end route. Path-
let routing is a flexible mechanism that, we show, can emu-
late a number of existing routing protocols, including BGP
and unrestricted source routing. It also enables a new type of
routing policy, local transit (LT) policies, which allows net-
works to control the portions of routes which transit across
them, while giving a large amount of flexibility to sources.
Finally, we show that LT policies have much better scalabil-
ity than BGP.

1 INTRODUCTION

Multipath routing, in which a packet’s source selects its path
from among multiple options, would be highly beneficial to
both end hosts and network providers on the Internet.

For an end host, multipath routing is a solution to
two important deficiencies of the Border Gateway Protocol
(BGP) [12]: poor reliability [1, 7, 9] and suboptimal path
quality, in terms of metrics such as latency, throughput, or
loss rate [1, 13]. Both reliability and path quality could be
improved via multipath routing. End-hosts (or perhaps edge
routers) can observe end-to-end failures quickly and react
by switching to a different path, and can observe end-to-end
path quality in real time and make decisions appropriate to
each application. Greater routing flexibility may bring other
benefits as well, such as enabling competition and encourag-
ing “tussles” between different parties to be resolved within
the protocol [5].

For a network provider, multipath routing represents a new
service that can be sold to customers who desire the benefits
described above. In fact, commercial route control products
exist today which dynamically select paths based on avail-
ability, performance, and cost for multi-homed edge net-

works [3]; exposing more flexibility in route selection would
improve the effectiveness of such products.

Unfortunately BGP has very limited policy expressive-
ness: it greatly constrains the routing policies that a net-
work owner can encode—despite its position as the domi-
nant policy-aware routing protocol! For example, consider a
very permissive policy in which a network allows any possi-
ble route involving it to be used. Even if a network decided
to adopt this policy, perhaps because it had been paid suffi-
ciently, it could not be expressed in BGP.

Several proposals [16, 17] give networks the ability to of-
fer multiple paths, but we argue they are still relatively lim-
ited. For example, MIRO uses BGP routes by default, with
negotiation between autonomous systems for each additional
path; offering too many paths thus involves a prohibitively
large amount of state. NIRA [17] allows networks to offer
any valley-free path, but only valley-free paths, thus mak-
ing it in that respect more limited than BGP. It also requires
assumptions about the network topology.

Can we design a protocol which has rich policy expres-
siveness, thus allowing network operators to offer a service
of greater routing flexibility and hence greater reliability and
path quality?

This paper addresses that question with a novel scheme
called pathlet routing. In pathlet routing, networks adver-
tise pathlets—fragments of end-to-end paths—along which
they are willing to route. A sender concatenates its selec-
tion of pathlets into a full end-to-end source route, which is
specified in each packet. Pathlet routing is a simple gener-
alization of both path vector routing and source routing, in
terms of the end-to-end paths it can allow and disallow. If
each pathlet is a full end-to-end route, the scheme is equiva-
lent to path vector routing. If the pathlets are short, one-hop
fragments corresponding to links, then senders can use any
of the exponentially large number of paths in the network, as
in unrestricted source routing.

Pathlet routing has significant advantages over BGP, in-
cluding (1) highly expressive policies, and in particular, (2)
enabling a new type of routing policy which would offer dra-
matic improvements in router scalability and in route flexi-
bility for senders. In more detail, we evaluate pathlet routing
as follows:

• To demonstrate its policy expressiveness, we show
that pathlet routing can efficiently emulate unrestricted
source routing, path vector routing (BGP), and two
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recent multipath routing proposals, MIRO [16] and
NIRA [17]. On the other hand there exist protocols like
FBR [18] which pathlet routing cannot emulate.

• We show that pathlet routing enables a new class of
policies, local transit (LT) policies, that allow networks
to control the portions of routes which transit across
their own networks. Subject to these restrictions, LT
policies expose the full flexibility of the Internet’s au-
tonomous system (AS)-level routes to sources. The
exponentially large set of paths dramatically increases
route flexibility relative to BGP and many other policy-
aware routing protocols.

• We argue that pathlet routing with LT policies has much
better scalability than BGP and MIRO where it matters
most—forwarding plane memory usage—and in other
scalability metrics is comparable to or better than BGP.

The remainder of the paper proceeds as follows. In Sec. 2,
we introduce our pathlet routing mechanism. We evaluate
its policy expressiveness in Sec. 3 by comparison with other
protocols. Finally, we introduce and evaluate LT policies in
Sec. 4.

2 PATHLET ROUTING

This section defines pathlet routing, beginning with its build-
ing blocks of vnodes and pathlets, and continuing with the
control and data planes.

2.1 Building blocks
Pathlet routing is built upon virtual nodes, or vnodes, which
are arbitrary abstract nodes created by an AS to represent the
structure of routes within its own network. This virtualiza-
tion enables flexible control. A vnode might variously repre-
sent an entire AS, a presence in a geographic area, a physical
router, a type of service within a router, or other granularities
that we will demonstrate later. There can be multiple routers
for each vnode, and multiple vnodes at each router.

Vnodes need to be associated with physical routers only
at peering points between ASes, where neighboring routers
announce their vnodes to each other. For other vnodes, the
mapping to physical routers is not exposed in the protocol.

Finally but importantly, a vnode can be tagged with a des-
tination, such as an IP prefix.

A pathlet represents a sequence of vnodes along which
the announcing AS x is willing to route. The first vnode
should be in x’s own network, but this may be followed by
vnodes in x or in other ASes as the pathlet may continue
outside x’s network.

A pathlet announcement consists of the following infor-
mation: (1) The path that packets using this pathlet will tra-
verse, given as a sequence of vnodes. Vnode identifiers are
local to each AS, so the path lists a pair (AS,vnode) to glob-
ally identify each hop. (2) A forwarding identifier sequence
(FIDseq): a sequence of forwarding identifiers (FIDs) to be

placed in the packet to instruct the first vnode to use this
pathlet.

The first entry of the FIDseq is a FID that uniquely identi-
fies pathlet p within the first vnode in p. Importantly, it need
not be globally unique like the identifiers in IP source rout-
ing, or even unique within an AS. The result is very compact
FIDs; for example a vnode handling 256 or fewer unique
pathlets could use one-byte FIDs. The remaining FIDs in the
FIDseq, if any, identify other pathlets that are used to effect
forwarding along this pathlet. (We will see examples in §3.)

2.2 Control plane
Pathlet construction. A router r announces to each neigh-
bor r′ its AS number and a vnode identifier v, indicating that
every packet sent from r′ to r will be interpreted as being
directed to vnode v. Thus, initially, a router can construct
pathlets that include its own vnodes and those of its neigh-
bors’ peering points. After learning other ASes’ pathlets,
it can concatenate multiple pathlets to produce new pathlets
spanning multiple ASes.

Pathlet dissemination. Any pair of routers, regardless
of physical location, may open a control plane connection
to disseminate pathlets. Presumably this will be done at
least by physically adjacent routers. Disseminating infor-
mation in distributed systems generally can be described as
either “push” or “pull”, and we will find it useful to in-
clude both of these fundamental communication patterns. In-
tuitively, pushing state is useful at least for bootstrapping,
while pulling allows additional state to be created on de-
mand.

First, a router may push some subset of the pathlets it
knows, according to a local export policy. For example, in
several cases we will use a gossiping policy, where each
router pushes to its neighbors all the pathlets it has con-
structed or learned. Second, a router may pull pathlets by
requesting certain pathlets from a router, such as those rele-
vant to a specified destination. We will use this pull dissem-
ination pattern to emulate both MIRO and NIRA.

2.3 Data plane
Route selection. Once a router has learned a set of pathlets,
it can select from among these a route for each packet. The
schemes by which routers learn dynamic path quality and
availability and select routes are decoupled from the pathlet
routing protocol. Separating these components, as in [17, 18]
but unlike BGP, gives room for a wide range of solutions to
coexist, such as each network operating a route monitoring
service for its users [17], commercial route selection prod-
ucts [3], individual sources probing paths, or a global “Inter-
net weathermap” service.

However, it is likely useful to include a basic availability-
monitoring protocol. In the rest of the paper, including the
scalability evaluation in Section 4, we will assume the fol-
lowing. We run a global link-state protocol disseminating the
state of all links between adjacent vnodes (where adjacency
is defined by advertised pathlets). A router keeps an active
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set of pathlets, all of whose links are currently available. To
find a path to a destination, it can then run any shortest-path
algorithm on a graph whose edges are pathlets in the active
set.

Note it would also be possible to withdraw and re-
advertise pathlets in response to failure and recovery, instead
of using a link state protocol. This may incur more overhead
if many pathlets use a single link between vnodes.

Packet forwarding. The data structure routers use for for-
warding is as follows. For each vnode at a router, there is an
exact-match table that maps each valid FID f to two pieces
of information: (1) the FIDseq of the pathlet corresponding
to f , and (2) a next hop rule to send the packet to the next
pathlet routing-aware hop or its destination. Examples in-
clude transferring the packet to another vnode at the same
router; sending it on a certain outgoing interface; or tunnel-
ing it across an intradomain routing protocol like OSPF to
the IP address of an egress point.

We now describe the forwarding procedure. A packet con-
tains a sequence of FIDs ( f1, f2, . . . , fn) of the pathlets form-
ing the route to its destination. Initially, this is set by the
sender to the selected route. When a packet is sent from
router r′ to r, it is interpreted as arriving at a specific vnode
v at r (which r declared to r′ in the control plane). Router
r checks for f1 in the forwarding table for vnode v. If no
entry is found, the packet is malformed and is dropped. Oth-
erwise, the table maps f1 to the FIDseq ( f ′1, f ′2, . . . , f ′k) for
the pathlet, and a next hop rule. The router verifies that the
FIDseq is a prefix of the FIDs in the packet, i.e., fi = f ′i for
i ∈ {1, . . . ,k}, to ensure that the route is legitimate for this
pathlet, dropping the packet if the match fails. Otherwise,
the router pops the first FID off of the route and forwards the
packet according to its next hop rule.

In the next section, we will see several examples of the
protocol in action.

3 COMPARISON WITH OTHER PROTOCOLS

A key goal for pathlet routing is that it enables ASes to ex-
press a broad range of routing policies. In this section, we
give evidence for this policy expressiveness by showing that
pathlet routing can emulate several existing protocols: unre-
stricted source routing (USR), BGP, MIRO, and NIRA. By
“emulate” we mean that pathlet routing can match the same
set of end-to-end allowed and prohibited paths. Note that
these protocols have substantially different forwarding archi-
tectures, but all are special cases of pathlet routing. Finally,
we compare pathlet routing and Feedback Based Routing,
neither of which can emulate the other.

These sections also serve to illustrate the mechanisms of
pathlet routing described in Section 2, to which end we give
a fairly detailed description of pathlet routing’s emulation of
USR and BGP.

Unrestricted source routing (USR) at the AS level dis-
seminates the entire topology globally, and lets a source AS
use any path in the graph by putting a sequence of ASes in

each packet.
At a high level, pathlet routing can emulate USR by using

one pathlet for each directed link. We give a more detailed
description using the AS-level topology in Fig. 1. Each AS
has a vnode representing it, which for convenience we will
name a,b,c,d,e, each tagged with a destination (IP prefix).
Each AS discovers its neighbors’ vnodes, and creates path-
lets to them. We will write pathlets in the form (P : F) where
P is the path of vnodes and F is the FIDseq to be installed in
the packet to direct it along P. Then node b, for example, cre-
ates pathlets (b,a : 1), (b,c : 2), and (b,d : 3). Here the FID-
seqs have just a single entry because each pathlet is just one
hop. The FIDs themselves are arbitrary identifiers unique to
each vnode. Suppose the other ASes also announce path-
lets for each outgoing link and each terminal vnode, such as
(a,b : 1), (c,d : 2). All these pathlets are gossiped globally.

a b

c

d

Figure 1: Example
AS-level network
topology.

We can now send a packet at AS
a with the route (1,2,2) to use the
path (a,b,c,d). At vnode a the
router looks up index 1 in its for-
warding table, finding the pathlet
(a,b : 1) and the appropriate outgo-
ing interface along which to forward
the packet. It pops off the first FID and sends the packet with
route (2,2) to node b. This process repeats until the packet
reaches its destination d.

BGP. Pathlet routing can emulate BGP’s routing policies
using pathlets which extend all the way to a destination. We
give a simple example, again using the topology of Fig. 1.
Suppose that in BGP, d advertises a destination IP prefix; d
exports routes only to c but all other ASes export all routes;
and in the BGP decision process, all ASes select the shortest
of their available routes.

We emulate this in pathlet routing as follows. To allow se-
lective route exporting, each AS has one vnode per neighbor,
e.g. d’s vnodes are db and dc, as well as a terminal vnode d•
tagged with its IP prefix(es). It creates a pathlet (dc,d• : 1),
but no pathlet from db to d•: any packet arriving from b must
therefore be invalid and hence will be dropped. The other
pathlets created are (cb,dc,d• : 7,1), (ba,cb,dc,d• : 4,7,1).
Here the FIDseq has multiple entries, unlike the USR exam-
ple above. (Note again that the FIDs 4,7,1 are arbitrary.)

A packet can now be sent from AS a to AS b with route
(4,7,1) to use the path (ba,cb,dc,d•). The vnode ba looks
up index 4 in its forwarding table, verifies that the associated
pathlet’s path is a prefix of the packet’s path, and forwards
the packet to cb with route (7,1)—which, in turn, forwards it
to dc with route (1), which forwards it to d• with the empty
route (), where it is delivered.

MIRO [16] is a multipath extension of BGP. In addition to
using BGP’s paths, a MIRO router r1 can contact any other
MIRO router r2 and request alternate routes to a given desti-
nation d, potentially including preferences regarding which
alternate routes are returned. Router r2 responds with some
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subset P of the alternate routes that r2 has available to d,
from which r1 picks one route p ∈ D. Finally, a tunnel is
constructed: r1 can send a packet along an existing path to
some IP address specified by r2, which forwards them to p.

MIRO’s tunneling is easy to emulate using source rout-
ing over pathlets, by placing two pathlets in a packet’s route:
one representing the tunnel, and a second representing the re-
mainder of the alternate route. To obtain the alternate-route
pathlet, a pathlet router can contact any other and pull routes
to a specified destination, similar to MIRO. We omit the de-
tails.

Pathlet routing can emulate MIRO; is the converse true?
MIRO can represent any possible end-to-end path with the
appropriate tunnels. But each allowed end-to-end route is
constructed and represented explicitly, so there are network
topologies for which MIRO would require Θ(n!) state to rep-
resent all possible routes in a graph of n nodes. Thus MIRO
cannot scalably emulate pathlet routing (or USR).

NIRA [17] offers more choice to sources than BGP, while
simultaneously reducing control plane state. NIRA supports
routing along so-called valley-free paths, which consist of an
“up” portion along provider links, then potentially a peer-
ing link, and finally a “down” portion along customer links.
Each AS learns all of its “up” routes and publishes them at
a well-known Name-to-Route Lookup Service (NRLS). A
source constructs the first half of a path by choosing a route
from its own up-graph, and the second half from the reverse
of a route in the destination’s up-graph, which it obtains by
querying the NRLS.

Pathlet routing can emulate NIRA’s routing policy, includ-
ing its compact routing state. We again use the “pull” mode
of obtaining pathlets in place of the NRLS. We concatenate
appropriately constructed pathlets representing the up route,
a short route across the core, and the down route. We omit
details due to space constraints.

MIRO and BGP cannot scalably emulate NIRA because
NIRA can compactly represent a very large number of paths
by allowing any up-route to be paired with any down-route.
On the other hand, NIRA cannot emulate USR, MIRO, BGP,
or pathlet routing since it is limited to valley-free routes.

Feedback Based Routing (FBR) [18] is an example of a
protocol which is incomparable with pathlet routing in the
sense that neither protocol can emulate the other. FBR is
source routing at the AS level, with each link tagged with
an access control rule, which either whitelists or blacklists a
packet based on its source or destination IP address. Pathlet
routing cannot emulate FBR for two reasons. First, a pathlet
router can decide whether to accept a packet based only on
its immediately previous hop and on its remaining hops—not
based on the full end-to-end path including the source. Sec-
ond, FBR has both blacklisting and whitelisting, while path-
let routing effectively has only whitelisting, meaning FBR
can represent some policies more efficiently.

However, FBR cannot emulate pathlet routing, either. For
example, controlling access based on source and destination

address ignores intermediate hops which can be taken into
account by pathlet routing.

Zhu et al [18] suggested that the access control rules could
be more complex than source/destination address matching.
Similarly, it is possible that pathlet routing could be extended
to include matches on the full end-to-end path and blacklist-
ing; this may be an interesting area of future research.

4 LOCAL TRANSIT POLICIES

In the previous section, we saw that pathlet routing can ef-
ficiently express a wide variety of routing policies, emulat-
ing a number of past schemes. In this section we discuss a
new class of policies enabled by pathlet routing, local tran-
sit (LT) policies. LT policies allow networks to control what
is arguably the most important aspect of routing policy: the
portions of routes which transit across their own networks.

We first define LT policies (§4.1) and argue that LT poli-
cies are useful (§4.2) and offer a large amount of route flex-
ibility to sources (§4.3). We then show how LT policies can
be implemented in pathlet routing (§4.4) and that this imple-
mentation has much better scalability than BGP (§4.5).

4.1 Definition
We define local transit policies as those policies in which a
network x’s willingness to carry traffic following some path
across its network depends only on the portion of the path
that crosses x’s network. In other words, under an LT policy
the permissibility and cost of some path, according to x, is a
function only of the ingress and egress point of the path in
x. Note that LT policies are independent of x’s preferences
on the paths taken by traffic that x sends, which may be arbi-
trary.

Consider Fig. 1. If AS b follows an LT policy and allows
the path (a,b,c), then it must also allow the path (a,b,c,d),
but possibly not (a,b,d) or (c,b,a) which have different
ingress or egress points. Essentially, in LT policies, pathlets
do not extend beyond a network’s ingress/egress points.

4.2 Capturing policies and costs
We argue that LT policies represent an important class of
routing policy, with two points. First, the direct costs to a
network of carrying traffic is incurred between its ingress
and egress points; for example, the path a packet follows
before it arrives at an AS x and after it leaves x do not affect
the congestion on x’s network. Second, a special case of
LT policies—namely valley-free routes [6]—is a common
route export policy in BGP today. Valley-free routes can be
defined as follows: each neighbor is labeled as a customer,
provider, or peer; a BGP route is exported to a neighbor x
if and only if either the next hop of the route is a customer
or x is customer. This is a function of the ingress and egress
point, and hence is an LT policy.

Of course, valley-freeness defines which routes are al-
lowed, but not which ones are preferred. In BGP, this is
handled by picking the single most preferred route for each
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destination as the only route. This brings us to a key chal-
lenge: providing the incentive for a transit AS to offer more
than the single end-to-end path which is most convenient for
that AS.

We envision two ways this incentive could be provided.
The first is simply payment between ASes for a multipath
routing service which does not discriminate the cost of each
path—much as today’s transit services have a fixed rate re-
gardless of a packet’s destination.

Second, a more discriminatory service could differentiate
prices based on the path used. In pathlet routing, it would
be easy to annotate each pathlet with a cost. This does not
effect a monetary payment, but it does permit the commu-
nication of prices to sources, so that payment can happen
via some mechanism external to the protocol. Designing
such a payment mechanism is outside the scope of this paper.
However, note that measurements indicate that ASes’ rout-
ing preferences are based on next-hops (i.e., egress point) for
98% of IP prefixes [15]. Thus, once a payment mechanism is
in place, it would be possible to represent those preferences
as LT policies.

It is also possible that ASes would be reluctant to use LT
policies because their policies become more explicitly vis-
ible. But high level routing policies such as business rela-
tionships between neighbors can be inferred from publicly
available data from BGP routers today. [14]

4.3 Enabling route flexibility
LT policies can provide a dramatic amount of flexibility for
sources—potentially, any AS-level path—because the net-
works’ pathlets can be concatenated in an exponentially large
number of ways. But this flexibility is limited by the specific
LT policies that are chosen.

For example, networks could limit routes to being valley-
free. In this case there would still be vastly more flexibil-
ity than BGP, but no more than in NIRA. Unlike NIRA,
pathlet routing would not be limited to Internet-like topolo-
gies. Also, handling exceptions to policies is more difficult
in NIRA: a special source routing option is required in the
data plane and in the control plane, no mechanism for discov-
ering non-valley-free routes is provided. In pathlet routing,
if for example an AS wished to provide transit service be-
tween two peers or two providers, this would simply involve
advertising two additional pathlets (one in each direction).

However, much more flexibility than valley-free routes
may be available. Some incentive for this flexibility exists:
for example, a path which is not the cheapest may be worth-
while for real-time applications, or when cheaper paths have
failed. Whether ASes choose to expose these routes depends
on business decisions and payment mechanisms, but pathlet
routing makes it feasible at a technical level.

4.4 Implementation
LT policies are easy to implement in pathlet routing: for each
ingress x and egress y for which an AS allows routing from
x to y, it announces a pathlet (x,y), in addition to pathlets

Figure 2: vnodes and pathlets for a full LT policy (left) and a class-based
LT policy (right) in a single AS with two providers and three customers.

that terminate at its own IP prefixes. However, this results in
d2 pathlets for a network with d neighbors. Thus, for large
networks, it may be more appropriate to use what we call
class-based LT policies, in which each neighbor is assigned
to a class (such as a geographical region, or business rela-
tionship) represented by ingress and egress vnodes, and we
use full LT policies between only these class vnodes. These
two options are depicted in Fig. 2.

To the best of our knowledge, other policy-aware routing
proposals cannot efficiently implement the same set of pos-
sible paths that is exposed by LT policies. BGP cannot rep-
resent multiple paths per neighbor; MIRO must set up each
end-to-end path explicitly, resulting in exponentially more
state; NIRA represents only valley-free routes; and FBR ex-
amines a packet’s source and destination IP address, which
does not include information about the intermediate hops,
such as a transit from peer to customer vs. peer to provider.

4.5 Scalability

We evaluate the scalability of LT policies, which is simi-
lar to that of unrestricted source routing. It has been sug-
gested [16] that source routing schemes may not scale since
each router must have current knowledge of the entire net-
work. On the contrary, we argue that pathlet routing with LT
policies in fact has much better scalability than BGP (and,
hence, MIRO [16]) where it matters most—forwarding plane
memory usage—and in other scalability metrics is compara-
ble to or better than BGP.

In this evaluation, we assume class-based LT policies with
three classes representing the customer, provider, and peer
business relationships. (Our conclusions would be substan-
tially similar with full LT policies on all ASes except for the
very high degree (top 1%) ASes, or with other class-based LT
policies with a limited number of classes.) Following the pat-
tern in Fig. 2 which depicts two classes, using three classes
results in 6 + d pathlets created by each AS with d neigh-
bors, plus 3 pathlets to link each class to a destination vnode
with associated IP prefixes. In fact, this may overestimate
the number of pathlets, e.g. if the provider→provider pathlet
is omitted in order to disallow transit between providers.

We produce numerical results by analyzing an AS-level
topology of the Internet generated by CAIDA [4] and data
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from APNIC on global IP prefix allocation [2], both from
August 18, 2008.

Forwarding plane memory. Because it has to operate
at high speeds and often uses SRAM rather than commod-
ity DRAM, memory that stores a router’s Forwarding Infor-
mation Base (FIB) is arguably more constrained and expen-
sive than other resources in a router [10]. LT policies dra-
matically reduce the necessary size of the FIB relative to
BGP. Using class-based LT policies as described above in
this topology results in a maximum of 2,317 and a mean of
only 6.1 pathlets to represent an AS. This is also an upper
bound on the number of pathlets per router assuming at least
one router per AS. In comparison, BGP FIBs would need to
store entries for 266,073 IP prefixes.

Control plane memory. In the AS-level measured topol-
ogy, there are a total of 157,454 pathlets; tagging vnodes
with IP prefixes brings the total to 423,527 entries. In com-
parison, the RIB in a BGP router with d neighbors advertis-
ing a route to every prefix would contain 266,073 ·d entries,
which is already worse than pathlet routing for d ≥ 2 and can
become problematic in practice for larger d [8].

Control plane messaging. Here we employ simple anal-
ysis. Consider the effect of a single link failure in a AS-level
topology of n nodes, mean degree d, and mean path length
`. In pathlet routing, a standard gossiping protocol (§2.3) re-
sults in a link state update being sent once along every edge
in the graph, i.e., dn/2 messages.

In BGP, the number of updates is at least the number N
of source-destination pairs that were using the failed link.
Suppose a random link fails, and let `st be the length of a
path s → t. Then we have

E[N] = ∑
s,t

Pr[failed link ∈ path s → t]

= ∑
s,t

`st

nd/2

=
2(n−1)`

d
.

In the Internet AS-level topology, we roughly have `≈ d ≈ 4,
making the messaging cost for both protocols close to 2n.
Moreover, BGP’s messaging cost would likely be substan-
tially higher than this lower bound for two reasons. First,
because BGP operates at the IP prefix level instead of the
AS level, it has in effect about 9n destinations [2] rather than
n. Second, BGP’s path exploration can result in much more
than one message per source-destination pair with a failed
link. [11]
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ABSTRACT

In recent years, the size and dynamics of the global rout-
ing table have increased rapidly along with an increase in
the number of edge networks. The relation between edge
network quantity and routing table size/dynamics reveals
a major limitation in the current architecture; there is a
conflict between provider-based address aggregation and
edge networks’ need for multihoming. Two basic direc-
tions towards resolving this conflict have surfaced in the
networking community. The first direction, which we
dub separation, calls for separating edge networks from
the transit core, and engineering a control and manage-
ment layer in between. The other direction, which we
dub elimination, calls for edge networks to adopt multi-
ple provider-assigned addresses to enable provider-based
address aggregation. In this paper, we argue that separa-
tion is a more promising approach to scaling the global
routing system than elimination, and can potentially be
leveraged to bring other architectural improvements to
today’s Internet that an elimination approach cannot.

1. INTRODUCTION

A recent workshop report by the Internet Architecture
Board (IAB) [16] revealed that Internet routing is facing
a serious scalability problem. The current global rout-
ing table size in the default-free zone (DFZ) has been
growing at an alarming rate over recent years, despite
the existence of various constraints such as a shortage
of IPv4 addresses and strict address allocation and rout-
ing announcement policies. Though the deployment of
IPv6 will remove the address shortage, there is an in-
creasing concern that wide-scale IPv6 deployment could
result in a dramatic increase of the routing table size,
which may exceed our ability to engineer the operational
routing system.

A major contributor to the growth of the routing ta-
ble is site multihoming, where individual edge networks
connect to multiple service providers for improved avail-
ability and performance [25]. In the presence of network
failures, a multihomed edge network remains reachable

as long as any one of its providers remains functioning.
In the absence of failures, the edge network can utilize
multiple-provider connectivity to maximize some locally
defined goals such as higher aggregate throughput, better
performance, and less overall cost. However, for an edge
network to be reachable through any of its providers, the
edge network’s address prefix(es) must be visible in the
global routing table. In other words, no service provider
can aggregate a multihomed edge network’s prefix into
its own address prefix, even if the edge network may be
using a provider-assigned (PA) address block. In addi-
tion, more and more edge networks are getting provider-
independent (PI) address allocations that come directly
from the Regional Internet Registries to avoid renum-
bering when changing providers. In short, multihoming
destroys topology-based prefix aggregation by providers
and leads to fast global routing table growth.

Routing table size is not the only scalability concern.
Equally important is the amount of updates the system
must process. Under the current, flat inter-domain rout-
ing system, a connectivity flap to any destination net-
work may trigger routing updates to propagate through-
out the entire Internet, even when no one is communi-
cating with the unstable destination network at the time.
Several measurement studies have shown that the over-
whelming majority of BGP updates are generated by a
small number of edge networks [12, 20]. Unfortunately,
a large-scale, decentralized system such as the Internet
will surely contain a small number of poorly managed or
even suspicious components.

A number of solutions to the routing scalability prob-
lem have been proposed, most recently in the IRTF Rout-
ing Research Group [1]. Though all the proposals share a
common goal of bringing routing scalability under con-
trol by removing PI prefixes and de-aggregated PA pre-
fixes from the global routing system, they differ in how
to achieve this goal. We observe that all the proposals
fall into one of two categories: separation or elimina-
tion. Solutions in the separation category insert a con-
trol and management layer between edge networks and

1

103



today’s DFZ, which we refer to as the Internet’s tran-
sit core; edge networks would no longer participate in
transit core routing nor announce their prefixes into it.
Solutions in the elimination category require that edge
networks take address assignments from their providers;
as a result a multihomed edge network will use multi-
ple PA addresses internally and must modify end hosts
to support multihoming.

The purpose of this paper is to compare the two ap-
proaches described above and articulate our arguments
for supporting the separation direction towards routing
scalability. Note that, if fully deployed, each of the two
approaches can be effective in achieving routing scalabil-
ity in a pervasively multihomed environment. Therefore,
our comparison is based on the following high-level cri-
teria to determine the actual impact of a proposed solu-
tion: (a) the difficulty in realizing the solutions in the
Internet; not only does this involve design issues, but
also deployment issues such as the ability to accommo-
date heterogeneity in the uncertain future, alignment of
costs and benefits, and effectiveness in partial deploy-
ment; (b) architectural benefits other than scalability –
we believe that IP routing and addressing play an essen-
tial role in the overall architecture, and that the right kind
of changes could help rectify other problems that stem
from the same architectural deficiencies.

2. SEPARATION

The root cause of the routing scalability problem fac-
ing us today is the fact that all the networks operate in
the same routing and addressing space. As a result, edge
growth is directly reflected in the core routing table size,
and unstable edge networks can flood the entire Inter-
net with frequent updates. The separation approach ad-
dresses this root cause by separating edge networks from
the transit core in the routing architecture. Generally
speaking, Internet service providers (ISPs) fall into the
category of transit networks who operate in the transit
core. The business of transit networks is to provide packet
transport services for other networks. End-user sites are
generally edge networks, which only function as sources
and sinks of IP packets. After these two types of net-
works are separated, edge network prefixes are elimi-
nated from the DFZ routing table. Thus, the DFZ rout-
ing table will grow with the number of ISPs, which is
much smaller and grows slower compared to that of edge
networks. More importantly, the separation enables ag-
gregation of routing announcements on a per-ISP basis.
Since most routing dynamics are generated by edge net-
works, separation will also greatly reduce routing churn
in the core. A previous study estimates that removing
edge networks from the core routing system can reduce
the routing table size and routing dynamics by an order
of magnitude [15]. However, due to the absence of edge-
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Figure 1: Separation via Map & Encap

prefixes from the DFZ, end-to-end data delivery requires
mapping a destination edge prefix to one or more transit
addresses that correspond to that edge network’s attach-
ment points to the transit core.

One realization of separation is Map & Encap [4, 11],
which uses IP-in-IP encapsulation to carry packets across
the transit core. As shown in Figure 1, each ISP has
border routers that perform encapsulation (Encapsula-
tion Router or ER) and ones that perform decapsulation
(Decapsulation Router or DR). When an ER receives
a data packet, it must discover the mapping from the
packet’s destination address to the corresponding DR ad-
dress. It then encapsulates the packet and forwards it
directly to the DR, who decapsulates and delivers the
packet to the final destination. Internal ISP routers or
routers connecting two ISPs do not need to understand
the encapsulation/decapsulation mechanism; they func-
tion the same way as they do today, only with a much
smaller routing table.

A number of Map & Encap schemes are under ac-
tive development and discussion in the IRTF Routing Re-
search Group community, including APT [13], LISP [6],
and TRRP [10]. There are also other types of separation
solutions besides Map & Encap. For example, Six-One
Router [23] and GSE [19] use address rewriting, which
rewrites the packet header to include information about
the destination’s attachment point to the transit core. A
common requirement of all the separation solutions is a
mapping system that associate an edge prefix with the
corresponding transit addresses.

Designing a mapping system is a challenging prob-
lem. Because failures of the mapping system can disrupt
packet delivery, it is vitally important to make the map-
ping system robust against failures and attacks. Other
issues include the difficulty of handling a large mapping
database and the potential overhead and delay introduced
by the mapping and encapsulation process. Note, how-
ever, that compared with routing data, mapping data has
several characteristics that make it easier to scale and se-
cure. First, a piece of mapping data reflects a long-term
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business relationship, so its changes should occur over
a relatively longer time scale (e.g., on a monthly basis).
Second, the change of one edge network’s provider only
affects that edge network’s mapping data, whereas link
failures in the routing system may affect many prefixes.

Several mapping systems designs have been proposed.
APT [13] propogates the full mapping table to each ISP.
ERs in each ISP use caching internal mapping queries
to deliver data. TRRP [10] proposes to set up another
DNS to serve mapping information. On the other hand,
LISP has proposed a number of different mapping sys-
tem designs, including LISP-CONS [2], LISP-ALT [5],
and LISP-NERD [14]. LISP-NERD distributes the full
mapping table to every ER, while LISP-CONS and LISP-
ALT build a DNS-like hierarchical overlay to retrieve
mapping data when needed. Each design has its own
pros and cons in terms of scalability, controllability, cost,
performance and security.

3. ELIMINATION

In order to achieve routing scalability, the elimina-
tion approach enforces provider-based address aggrega-
tion by eliminating all PI prefixes and de-aggregated PA
prefixes. Each multihomed edge network will receive
from each of its providers an address block out of a larger,
aggregated block announced by the provider. The mul-
tihomed site does not inject PI prefixes or more specific
PA prefixes into the routing system. Instead, each host
in a multihomed site is given multiple PA addresses. For
example, as shown in Figure 2, the host obtains two ad-
dresses, one from each of its network’s ISPs.

In the elimination approach, each host in a multihomed
site must be upgraded to understand how to utilize mul-
tiple addresses for packet delivery. Each host must also
be able to detect and handle potential failures of its up-
stream connections to its providers. Otherwise, the ben-
efits of multihoming are lost. One elimination scheme,
Shim6 [18], proposes to augment the IP layer for this
purpose. Shim6 defines a shim sublayer, placed in the
IP layer, which ensures that the transport layers at both

ends of a given communication sees the same IP iden-
tifiers, even though different IP addresses can be used
to forward packets along different paths. Prompt failure
detection at the IP layer, however, has proven to be diffi-
cult and involves a complex tradeoff between overhead,
recovery delay, and impact on transport layers [3].

Elimination can also be achieved through multipath
transport [9] [21] which can overcome the above-mentioned
issues associated with Shim6. Multipath transport works
as follows. To communicate with a destination in a mul-
tihomed site, a source first uses DNS to find at least one
address for the destination. During the initial three-way
TCP handshake, the sender and the receiver exchange all
of their addresses. The transport layer then creates multi-
ple subflows from all sender addresses to all receiver ad-
dresses. Each subflow performs its own congestion con-
trol, and subflows may cooperate with each other. That
is, if a packet gets dropped due to one subflow being con-
gested, it can be resent on another uncongested subflow.
Assuming transport protocols provide reliable delivery,
their closed-loop data exchange provides automatic fail-
ure detection. At the same time, the use of multiple paths
simultaneously reduces the dependancy on any specific
paths. By choosing different (source,destination) address
pairs, hosts can utilize the end-to-end paths to achieve
higher throughput, better performance and faster failure
handling.

Multipath transport realization also faces a number of
challenges. Being able to effectively gauge the status of
multiple paths requires transmitting a large quantity of
data and sophisticated subflow control; not all applica-
tions can continuously send large quantities of data (e.g.,
VoIP connections), and not all end points are suited to
perform complex control (e.g., small sensors). It also
remains an open question whether all multihomed edge
sites are willing to handle multiple PA addresses inter-
nally and perform renumbering when changing providers.
Moreover, since providers announce aggregated prefixes,
failures of links to individual edge networks will no longer
be reflected in the routing system; thus even long after a
link has failed, new nodes may still attempt to use the
failed link because individual transport connections de-
tect failures individually. A single failure inside the core
may also affect a large number of transport connections,
potentially triggering synchronized recovery attempts by
all of them. How to make effective use of multiple ad-
dresses and how to detect and recover from failures are
open challenges when designing an elimination scheme.

4. WHY SEPARATION?
If fully deployed, both the separation approach and the

elimination approach can achieve the same goal of rout-
ing scalability. However, there are important differences
that reveal separation to be a better direction than elimi-
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nation towards routing scalability.

4.1 Aligning Cost with Benefits
For any significant change to happen on the Internet,

the cost of deployment must align with the benefits of the
deployment. Since it is the transit networks that are fac-
ing the routing scalability problem, naturally they would
have incentive to deploy a solution once it is available.
With the separation approach, transit networks can de-
ploy the solution directly and receive the benefits men-
tioned in the previous section. In other words, the par-
ties responsible for fixing the problem are also the par-
ties who suffer the negative effects if the problem goes
unaddressed.

The elimination approach does not change the routing
architecture per se; it requires changes of network op-
erations in edge networks and software upgrade at end
hosts. At first glance it may appear simpler than the sep-
aration approach because it does not need the develop-
ment of a mapping system. However to remove any of
the PI prefixes from the global routing table, the edge
networks using PI prefixes must agree to relinquish them
and accept PA addresses from their providers instead.
The amount of routing table size reduction depends on
the number of edge networks that choose to give up their
PI prefixes. Under Elimination, transit networks can do
nothing but wait for a unanimous action by all the edge
networks before the routing table begins to scale. Unfor-
tunately, the routing system has no control over edge site
deployment of new solutions. By the time a significant
portion of edge sites deploy the new Elimination-based
solution(assuming that time ever comes), the routing ta-
ble may have already grown beyond critical mass.

4.2 Accommodating Heterogeneity
The separation approach has the ability to accommo-

date heterogeneity in network operations. Different net-
works have different operational practices and consider-
ations. The elimination approach requires all edge net-
works to use PA addresses, but some networks may not
want to do so – it may cause them trouble in renumber-
ing when they switch providers, or they may not want
to give end hosts the ability to affect traffic engineer-
ing within their network. Since the elimination approach
pushes multiple PA addresses all the way to end hosts,
what an edge site does within its network can impact
the deployment and effectiveness of the elimination ap-
proach. On the contrary, the separation approach is flex-
ible in that it does not enforce any particular operational
practices within edge networks. Some may choose to
give hosts multiple addresses to improve user experience,
while others may choose not to in order to tighten traffic
control. Both can be accommodated by the separation
approach because what an edge site does within its net-

work will not affect the transit core. The Internet is in-
herently heterogeneous. A main reason for the success of
the original Internet design is its ability to accommodate
heterogeneity at many different levels, and we believe we
must continue to accommodate heterogeneity in any new
architecture.

4.3 Other Architectural Benefits
Separating edges from the transit core provides addi-

tional features that are sorely missing in today’s Internet.
With separation, an end host can send packets through
the transit core, but can no longer address a packet to
any specific device inside the transit core. Although the
separation does not eliminate any specific security threat,
it raises the bar against malicious attacks targeted at the
global routing infrastructure. In addition, the mapping
layer between edge and core networks can serve as a
mounting point for badly-needed control and protection
mechanisms, and can also act as a cushion layer between
the edge and core, allowing each side to deploy innova-
tions without any involvement of the other side. We now
elaborate on each of these benefits.

Rolling out new protocols. Internet user innovations
don’t just happen at the application layer; they also occur
at transport and network layers. Intserv/Diffserv, IPv6,
and IP multicast, are just a few examples of this. Cur-
rently, those innovations require changes to the transit
core. In other words, users cannot roll out their new
transport and network layer protocols without actions from
ISPs which may not have financial incentive to support
them.

Separation allows edge networks to develop and de-
ploy new innovative address structures and new proto-
cols. For example, suppose two edge networks Site1 and
Site2 could develop a new IPvX address structure. The
process of sending an IPvX packet from Site1 to Site2
works as follows. First, the Site1 network routes the
IPvX packet to one of its border routers. The router then
encapsulates the packet with one of the transit core ad-
dresses associated with Site2 (selected by the mapping
service). It is essential to note that global agreement on
IPvX is not required. Only the mapping service needs to
know how to translate an IPvX address to one or a set of
transit core addresses.

DDoS mitigation. DDoS attacks abuse the open nature
of the Internet architecture by sending attack traffic from
multiple compromised hosts to a single, overwhelmed
target. In the last few years, a number of efforts have
been devoted to developing DDoS mitigation solutions
[24].

As described in [17], the DDoS mitigation solution
space has become increasingly complex over time. One

4

106



critical question is where to install the various traffic iden-
tification, filtering and blocking functions proposed by
the solutions. Various proposals place the needed func-
tions at the victim, the victim network entry point, some
intermediate point along the path, the source network,
and/or the source. We believe that the fundamental rea-
son for this diversity is due to the lack of a common
architectural framework for solution development. The
existing Internet architecture has no convenient hinges
or plug-in points where a defense layer could be easily
mounted when needed.

The mapping layer provides such a mounting point.
CIRL[7] is one example of approach that leverages the
mapping layer. The encapsulation of end-user packets
makes it easy to trace attack packets back to the ER, even
if they have spoofed source addresses, since the encap-
sulation header records the addresses of the ER and DR.
CIRL lets ERs perform rate-limiting on the traffic go-
ing to each specific DR in a way adopted from TVA [24],
but without requiring symmetric routing or host changes.
Feedback can be provided from DR to ER to adapt the
control parameters used for rate limiting.

Ingress traffic engineering. Today, multihomed edge
sites already have the ability to forward outgoing traf-
fic to whichever of their providers they prefer. However,
edge sites may also want control over their inbound traf-
fic flow for load balancing or using a particular provider
only as a backup. Today, edge sites’ options are limited
– they must resort to prefix splitting and BGP trickery.

Under separation, with the help of the mapping ser-
vice, an edge site can explicitly express its ingress traffic
engineering preferences in its mapping information. For
example, say edge site Site1 wants to communicate with
multihomed edge site Site2. When packets from Site1 to
Site2 enter the transit core, the mapping system will need
to select one of Site2’s connections to the transit core as
the exit. The mapping system has Site2’s explicit pref-
erences for this selection, and can therefore make this
decision based on some combination of Site1 and Site2’s
preferences. Though these preferences may be in con-
flict, this tussle between Site1, Site2, and their respective
providers plays out only in the mapping service’s selec-
tion mechanism. That is to say, this decision takes place
at the edges of the network and remains distinct from
the specialized problem of transporting packets across
the core in the most efficient manner.

5. SEPARATION IS COMPATIBLE WITH
MULTIPATH TRANSPORT

Multipath transport can actually be a great feature for
the transport layer. As multihoming (both host multi-
homing and site multihoming) becomes more and more
prevalent, there is an increasing need for TCP to explic-
itly select among multiple end-to-end paths. For exam-
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Figure 3: Adding Multipath Transport to Separation

ple, TCP may use multiple paths simultaneously to im-
prove throughput or switch from one path to another to
avoid congestion or decrease latency. If hosts have multi-
ple addresses, each of which corresponds to a network at-
tachment point, then they can use different (source,destination)
address pairs to utilize all available paths.

One misconception is that multipath transport is insep-
arably tied to the elimination approach. On the contrary,
multipath transport is orthogonal to elimination, and can
be used with PI addresses under separation as well. Each
edge network can split its provider-independent (PI) pre-
fix into multiple, longer subprefixes, mapping each sub-
prefix to different network attachment points (e.g., a provider’s
router or an Internet exchange point). Those hosts that
desire multipath transport are assigned multiple addresses,
one from each subprefix. In this way, hosts get multiple
source-destination address pairs providing multiple end-
to-end transport paths.

Additionally, the use of PI prefixes for multipath trans-
port provides an opportunity for edge site operators to
constrain an end user’s path selection. Figure 3 illus-
trates how this can be done. In the figure, SiteX has a PI
prefix 1.2.0.0/16 and is multihomed with three providers,
isp1, isp2, and isp3. SiteX only intends to use isp3 as a
backup – that is, isp3 should be used only if the link to
isp1 or isp2 fails. However, SiteX would still like to offer
its users some degree of path selection. Thus, SiteX sim-
ply splits its prefix into two subprefixes, 1.2.0.0/17 and
1.2.128.0/17, and assigns each end host two addresses.
In the mapping table, SiteX explicitly maps 1.2.0.0/17
to isp1 with isp3 as a backup, and maps 1.2.128.0/17 to
isp2 with isp3 as a backup.

6. SUMMARY

In the last few years a number of research efforts have
independently reached, or rediscovered, the same basic
idea: add a new layer of indirection in routing and ad-
dressing [15, 22, 26]. In addition to solving the rout-
ing scalability problem, this separation solution offers
a number of other advantages explained earlier in the
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paper: enabling end-path selection and multipath rout-
ing, raising the barrier against malicious attacks to the
routing infrastructure, allowing the edges and the core to
freely evolve independently from each other, and provid-
ing a boundary around the transit core in the form of a
mapping service, where various new security and control
functions can be easily implemented.

Host-based solutions, such as Shim6 [18] and multi-
path transport [9], can be used to realize the elimina-
tion approach to the routing scalability problem. An on-
going debate in the IRTF Routing Research Group in-
volves whether separation is still necessary, if and once
the multipath transport solution is deployed. In this pa-
per, we point out that the current proposal is actually a
combination of two pieces: multipath transport for bet-
ter transport performance as the primary goal, and elim-
ination of PI prefixes for better routing scalability as a
consequence. We explained why separation is prefer-
able over elimination to solve the scalability problem,
and sketched out how multipath transport can be incor-
porated into separation solutions.

In his 1928 article, “Being the Right Size” [8], J.B.S.
Haldane illustrated the relationship between the size and
complexity of biological entities and concluded that, “for
every type of animal there is a most convenient size, and
a large change in size inevitably carries with it a change
of form.” We believe that the same holds true for the
Internet. It would not have made any sense to have the
original routing system design split the network into two
parts, core and edges, with the added complexity of a
mapping service in the middle. However, the Internet has
grown so large over time that it is now technically and
economically infeasible to have all IP devices continue
to live in the same address and routing space. Hence,
a separation, along with a new mapping service, is both
necessary and justified.
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Abstract

This paper presents ViAggre (Virtual Aggregation),
a “configuration-only” approach to shrinking the
routing table on routers. ViAggre applies to legacy
routers and can be adopted independently and au-
tonomously by any ISP. ViAggre is effectively a scal-
ability technique that allows an ISP to modify its
internal routing such that individual routers in the
ISP’s network only maintain a part of the global
routing table. We find that ViAggre can shrink the
routing table on routers by more than an order of
magnitude while imposing negligible traffic stretch.

1 Introduction

The Internet default-free zone (DFZ) routing table
has been growing at a rapid rate for the past few
years [1]. Looking ahead, there are concerns that as
the IPv4 address space runs out, hierarchical aggre-
gation of network prefixes will further deteriorate
resulting in a substantial acceleration in the growth
of the routing table [2]. A growing IPv6 deployment
would worsen the situation even more [3].

The increase in the size of the DFZ routing ta-
ble has several harmful implications for inter-domain
routing. At a technical level, increasing routing ta-
ble size may drive high-end router design into vari-
ous engineering limits. For instance, while memory
and processing speeds might just scale with a grow-
ing routing system, power and heat dissipation ca-
pabilities may not [4]. On the business side, it makes
networks less cost-effective by increasing the cost of
forwarding packets [5] and making it harder to pro-
vision networks, not to mention the cost of actually
upgrading the routers to account for larger routing
tables. As a matter of fact, instead of upgrading
their routers, a few ISPs have resorted to filtering
out some small prefixes (mostly /24s) which implies
that parts of the Internet don’t have reachability to
each other [6]. It is a combination of these possibil-
ities that led a recent Internet Architecture Board
workshop to conclude that scaling the routing sys-
tem was one of the most critical challenges of near-
term Internet design [4].

The severity of the routing scalability problem has
also meant that a number of proposals have focussed
on reducing the size of the DFZ routing table [3,7–
14]. However, all these proposals require changes in
the routing and addressing architecture of the Inter-
net and perhaps this has contributed to the fact that

none of them have seen deployment.
An alternative is to tackle the routing scalabil-

ity problem through a series of incremental, cost-
effective upgrades. Guided by this, we propose Vir-
tual Aggregation or ViAggre, a “configuration-only”
solution that shrinks the routing table on routers.1

ViAggre applies to legacy routers. Further, it can be
adopted independently and autonomously by any ISP
and hence the bar for its deployment is much lower.
In effect, ViAggre is a scalability technique that al-
lows an ISP to modify its internal routing such that
individual routers in the ISP’s network only main-
tain a part of the global routing table. In this paper,
we briefly discuss two deployment options through
which an ISP can adopt ViAggre.

Preliminary results show that ViAggre can reduce
the size of routing tables on routers by more than an
order of magnitude while imposing negligible stretch
on traffic. However, several important questions re-
main unanswered. These include the impact of an
ISP adopting ViAggre on router load, network com-
plexity and network robustness. We discuss ongo-
ing work that aims to answer these questions. In
spite of these questions, we believe that its simplicity
makes ViAggre an attractive short-term alternative
that can be used by ISPs to cope with the growing
routing table till more fundamental, long-term archi-
tectural changes can be agreed upon and deployed
in the Internet.

2 ViAggre design

ViAggre allows individual ISPs in the Internet’s DFZ
to do away with the need for their routers to main-
tain routes for all prefixes in the global routing table.
An ISP adopting ViAggre divides the global address
space into a set of virtual prefixes that are larger than
any aggregatable prefix in use today. For instance,
an ISP could divide the IPv4 address space into 128
parts with a /7 representing each part (0.0.0.0/7
to 254.0.0.0/7). Note that such a näıve allocation
would yield an uneven distribution of real prefixes
across the virtual prefixes. However, the virtual pre-
fixes need not be of the same length and as long as
the virtual prefixes together cover the complete ad-
dress space, the ISP can choose them such that they
contain a comparable number of real prefixes.

1Specifically, we focus on the router Forwarding Informa-
tion Base (FIB).
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The virtual prefixes are not topologically valid
aggregates, i.e. there is not a single point in the
Internet topology that can hierarchically aggregate
the encompassed prefixes. ViAggre makes the virtual
prefixes aggregatable by organizing virtual networks,
one for each virtual prefix. In other words, a virtual
topology is configured that causes the virtual pre-
fixes to be aggregatable, thus allowing for routing
hierarchy that shrinks the routing table. To create
such a virtual network, some of the ISP’s routers
are assigned to be within the virtual network. These
routers maintain routes for all prefixes in the vir-
tual prefix corresponding to the virtual network and
hence, are said to be aggregation points for the vir-
tual prefix. A router can be an aggregation point
for multiple virtual prefixes and is required to only
maintain routes for prefixes in the virtual prefixes it
is aggregating.

Given this, a packet entering the ISP’s network is
routed to a close by aggregation point for the vir-
tual prefix encompassing the actual destination pre-
fix. This aggregation point has a route for the des-
tination prefix and forwards the packet out of the
ISP’s network. In figure 1 (figure details explained
later), router C is an aggregation point for the vir-
tual prefix encompassing the destination prefix and
B → C → D is one such path through the ISP’s
network.

2.1 Design Goals

The discussion above describes ViAggre at a concep-
tual level. However, the design space for organizing
an ISP’s network into virtual networks is character-
ized by several dimensions. For example, the flex-
ibility to change the ISP’s topology or to change
the routers themselves lead to very different archi-
tectures, all of which allow for virtual prefix based
routing. However, this paper aims for deployability
and hence is guided by two major design goals:

1. No changes to router software and routing pro-
tocols: The ISP should not need to deploy new
data-plane or control-plane mechanisms.

2. Transparent to external networks: An ISP’s deci-
sion to adopt the ViAggre proposal should not im-
pact its interaction with its neighbors (customers,
peers and providers).

These goals, in turn, limit what can be achieved
through the ViAggre designs presented here. Routers
today have a Routing Information Base (RIB) gen-
erated by the routing protocols and a Forwarding
Information Base (FIB) that is used for forwarding
the packets. Consequently, the FIB is optimized for
looking up destination addresses and is maintained
on fast(er) memory, generally on the line cards them-
selves. All things being equal, it would be nice to

shrink both the RIB and the FIB for all ISP de-
vices, as well as make other improvements such as
speed up convergence time.

While the basic ViAggre idea can be used to
achieve these benefits (section 5), we have not been
able to reconcile them with the aforementioned de-
sign goals. This paper takes the position that given
the performance and monetary implications of the
FIB size for routers, an immediately deployable so-
lution that reduces FIB size is useful. Actually, one
of the presented designs also shrinks the RIB on
routers; only components that are off the data path
need to maintain the full RIB. The rest of this sec-
tion abuses terminology and uses the term “ViAg-
gre” to refer to the specific design being presented.

2.2 Design-I

This section details one way an ISP can deploy vir-
tual prefix based routing while satisfying the goals
specified in the previous section. The discussion be-
low applies to IPv4 (and BGPv4) although the tech-
niques detailed here work equally well for IPv6. The
key concept behind this design is to operate the
ISP’s routing untouched and in particular, to popu-
late the RIB on routers with the full routing table
but to suppress most prefixes from being loaded in
the FIB of routers. A standard feature on routers
today is to prevent routes for individual prefixes in
the RIB from being loaded into the FIB. We have
verified this as part of our ViAggre deployment on
Cisco 7300 and 12000 routers. Documentation for
Juniper [15] and Foundry [16] routers specify this
feature too. We use this as described below.

The ISP does not modify its routing setup – the
ISP’s routers participate in an intra-domain rout-
ing protocol that establishes internal routes through
which the routers can reach other while BGP is
used for inter-domain routing just as today. For each
virtual prefix, the ISP designates some number of
routers to serve as aggregation points for the pre-
fix and hence, form a virtual network. Each router
is configured to only load prefixes belonging to the
virtual prefixes it is aggregating into its FIB while
suppressing all other prefixes.

Given this, the ISP needs to ensure that packets
to any prefix can flow through the network in spite
of the fact that only a few routers have a route to
the prefix. This is achieved as follows:

– Connecting Virtual Networks. Aggregation points
for a virtual prefix originate a route to the virtual
prefix that is distributed throughout the ISP’s net-
work but not outside. Specifically, an aggregation
point advertises the virtual prefix to its iBGP peers.
A router that is not an aggregation point for the vir-
tual prefix would choose the route advertised by the
aggregation point closest to it and hence, forward
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packets destined to any prefix in the virtual prefix
to this aggregation point.2

– Sending packets to external routers. When a router
receives a packet destined to a prefix in a virtual
prefix it is aggregating, it can look up its FIB to
determine the route for the packet. However, such a
packet cannot be forwarded in the normal hop-by-
hop fashion since a router that is not an aggregation
point for the virtual prefix in question might forward
the packet back to the aggregation point, resulting in
a loop. Hence, the packet must be tunneled from the
aggregation point to the external router that adver-
tised the prefix. While the ISP can probably choose
from many tunneling technologies, the description
in the rest of this paper assumes the use of MPLS
Label Switched Paths (LSPs) for such tunnels.

However, an LSP from the aggregation point to an
external router would require cooperation from the
neighboring ISP. To avoid this, every edge router of
the ISP initiates a LSP for every external router it
is connected to. Thus, all the ISP routers need to
maintain LSP mappings equal to the number of ex-
ternal routers connected to the ISP, a number much
smaller than the routes in the DFZ routing table.
Note that even though the tunnel endpoint is the
external router, the edge router can be configured
to strip the MPLS label from the data packets be-
fore forwarding them onto the external router. This,
in turn, has two implications. First, external routers
don’t need to be aware of the adoption of ViAggre
by the ISP. Second, even the edge router does not
need a FIB entry for the destination prefix, instead
it chooses the external router to forward the pack-
ets to based on the MPLS label of the packet. The
behavior of the edge router here is similar to the
penultimate hop in a VPN scenario and is achieved
through standard configuration.

We now use a concrete example to illustrate the flow
of packets through an ISP network that is using Vi-
Aggre. Figure 1 shows the relevant routers. The ISP
is using /7s as virtual prefixes and router C is an ag-
gregation point for one such virtual prefix 4.0.0.0/7.
Edge router D initiates a LSP to external router E
with label l and hence, the ISP’s routers can get to E
through MPLS tunneling. The figure shows the path
of a packet destined to prefix 4.0.0.0/24, which is en-
compassed by 4.0.0.0/7, through the ISP’s network.
The path from the ingress router B to the external
router E comprises of three segments:

1. VP-routed: Ingress router B is not an aggregation

2All other attributes for the routes to a virtual prefix are
the same and hence, the decision is based on the IGP metric
to the aggregation points. Hence, “closest” means closest in
terms of IGP metric.
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Figure 1: Path of packets destined to prefix 4.0.0.0/24 (or,
4/24) between external routers A and E through an ISP with
ViAggre. Router C is an aggregation point for virtual pre-
fix 4.0.0.0/7 (or, 4/7).

point for 4.0.0.0/7 and hence, forwards the packet
to aggregation point C.

2. MPLS-LSP: Router C, being an aggregation point
for 4.0.0.0/7, has a route for 4.0.0.0/24 with
NEXT-HOP set to E. Further, the path to router
E involves tunneling the packet with MPLS label
l.

3. Map-routed: On receiving the tunneled packet
from router C, egress router D looks up its MPLS
label map and forwards the packet to external
router E after stripping off the MPLS header.

The description above suggests that all of the
ISP’s traffic would need to be routed through some
aggregation point. However, several past studies
from as early as 1999 have shown that a large major-
ity of Internet traffic is destined to a very small frac-
tion of prefixes [17–20]. Consequently, routes to these
popular prefixes will be maintained by all routers so
that ViAggre’s impact on the ISP’s traffic is mini-
mal.

2.3 Design-II

The second design offloads the task of maintaining
the full RIB to devices that are off the data path.
ISPs commonly use route-reflectors for scalable in-
ternal distribution of BGP prefixes and we require
only these route-reflectors to maintain the full RIB.
For ease of exposition, we assume that the ISP is al-
ready using per-PoP route reflectors that are off the
data path, a common deployment model.

In the proposed design, the external routers con-
nected to a PoP are made to peer with the PoP’s
route-reflector.3 This is necessary since the exter-
nal peer may be advertising the entire DFZ rout-
ing table and all these routes obviously cannot re-
side on any given router. The route-reflector also has

3Note that these will be eBGP multihop peerings since
the route-reflector is not directly connected to the external
routers.
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iBGP peerings with other route-reflectors and with
the routers in its PoP. Egress filters are used on the
route-reflector’s peerings with the PoP’s routers to
ensure that a router only gets routes for the prefixes
it is aggregating. This shrinks both the RIB and the
FIB on the routers. The data-plane operation and
hence, the path of packets through the ISP’s net-
work remains the same as with the previous design.

2.4 Design Comparison

As far as the configuration is concerned, configur-
ing suppression of routes on individual routers in
design-I is comparable, at least in terms of com-
plexity, to configuring egress filters on the route-
reflectors. In both cases, the configuration can be
achieved through a BGP route-map; in design-I, the
route-map is applied at individual routers while in
design-II, it is applied to the iBGP peerings of the
route-reflectors.

Design-II, apart from shrinking the RIB on the
routers, does not require the route suppression fea-
ture on routers. However, it does require the ISP’s
eBGP peerings to be reconfigured which could rep-
resent a substantial overhead. It may also seem
that the second design impacts the ISP’s robust-
ness since the failure of a route-reflector in a PoP
would severely impact the PoP’s routers. However,
this is not qualitatively any different from the use of
route-reflectors today and is typically accounted for
by using redundant route-reflectors.

3 ViAggre Impact

ViAggre causes packets to take paths longer than na-
tive paths. Apart from the stretch imposed on traf-
fic, this leads to extra load on the ISP’s routers and
links. In the first part of this section, we study how
an ISP may choose the aggregation points for its vir-
tual prefixes so as to shrink the FIB on its routers
while constraining traffic stretch. We comment on
the load increase issue in section 3.3.

3.1 Assigning Aggregation Points

Ideally, an ISP would like to deploy an aggregation
point for all virtual prefixes in each of its PoPs such
that for every virtual prefix, a router chooses the
aggregation point in the same PoP and hence, the
stretch imposed on the ISP’s traffic is minimal. How-
ever, this is often not possible in practice. This is
because ISPs, including tier-1 ISPs, often have some
small PoPs with just a few routers and therefore
there may not be enough cumulative FIB space in
the PoP to hold all the actual prefixes.

Hence, the ISP needs to be smart about the way
it designates routers to aggregate virtual prefixes.
To this effect, we have implemented a very simple
tool that uses an ISP’s topology and information
about router memory constraints to determine an
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Figure 2: Variation of FIB size and stretch with the con-
straint on the worst-case stretch.

assignment of aggregation points to the ISP routers.
This tool lets us explore the trade-off between traf-
fic stretch and FIB size offered by ViAggre. Specif-
ically, the parameters of interest here include the
Worst-case FIB size which refers to the largest FIB
across the ISP’s routers and the Worst-case stretch
which refers to the maximum stretch imposed across
traffic to all destination prefixes from all PoPs. We
also define Average-case stretch as the average of the
stretch imposed on traffic across all PoPs. The tool
uses a greedy algorithm to assign the ISP’s routers
to aggregate virtual prefixes so as to minimise the
worst-case FIB size while ensuring that the worst-
case stretch is within a specified bound. While triv-
ial, such a constraint would probably be critical for a
practical deployment so that the ISP can ensure that
its existing SLAs with managed Internet customers
are not breached due to ViAggre. In the interest of
brevity, we don’t discuss the details of our algorithm
here; however, below we discuss the application of
this tool.

3.2 Tier-1 ISP study

We used the router-level topology and BGP rout-
ing tables of a tier-1 ISP to determine the impact
of the ISP adopting ViAggre. Instead of using vir-
tual prefixes of the same length, we programmati-
cally selected the virtual prefixes such that the dis-
tribution of real prefixes across them is relatively
uniform. This led to a total of 1024 virtual prefixes
that are in the FIB of every router.

We then used the aforementioned algorithm to de-
termine an assignment of aggregation points that
minimizes the worst-case FIB size given a constraint
on the worst-case stretch. Figure 2 shows the (aver-
age and worst-case) FIB size and stretch for different
constraints. As expected, the worst-case FIB size re-
duces as the stretch constraint is relaxed. For the
ISP being studied, ViAggre can yield a more than
20x reduction in FIB size while ensuring that the
worst-case stretch is less than 4 msec and the aver-
age stretch is less than 0.2 msec. Note that choos-
ing the virtual prefixes such that the distribution of
actual prefixes across them is not skewed provides
the algorithm with greater flexibility in choosing ag-
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gregation points. For instance, simply using /7s as
virtual prefixes yields a reduction of ≈12x with the
same 4 msec constraint.

3.3 Router Load

A näıve ViAggre deployment can cause a significant
increase in traffic load across the ISP’s routers and
links, not to mention the resulting interference with
the ISP’s traffic engineering. For instance, for the
ISP discussed in section 3.2, calculations using the
ISP’s traffic matrix yielded that a deployment with
worst-case stretch constrained to 4 msec would re-
duce the FIB size by more than 20x but would also
cause a median increase in router load by 31.3%.

As mentioned earlier, the ISP can alleviate the
load concern by taking advantage of the skewed dis-
tribution of traffic across Internet prefixes, which
also holds for the ISP we studied. For instance, we
found that 5% of the most popular prefixes were
carrying 96.7% of the ISP’s traffic. Hence, the ISP
can maintain routes to these popular prefixes on all
its routers to greatly reduce both the load increase
and the amount of traffic that gets stretched due to
ViAggre. While we don’t present the details of our
load analysis, considering 5% of the prefixes to be
popular would drop the median and the worst-case
load increase across the routers to less than 1% of
the router’s native load.

4 Related Work

A number of efforts have tried to directly tackle the
routing scalability problem through clean-slate de-
signs. One set of approaches try to reduce routing
table size by dividing edge networks and ISPs into
separate address spaces [3,7–9,13]. Alternatively, it
is possible to encode location information into IP ad-
dresses [10–12] and hence, reduce routing table size.
Finally, an interesting set of approaches that trade-
off stretch for routing table size are Compact Routing
algorithms; see [21] for a survey of the area.

The use of tunnels has long been proposed as a
routing scaling mechanism. VPN technologies such
as BGP-MPLS VPNs [22] use tunnels to ensure that
only PE routers need to keep the VPN routes. As a
matter of fact, ISPs can and probably do use tun-
neling protocols such as MPLS and RSVP-TE to en-
gineer a BGP-free core [23]. However, edge routers
still need to keep the full FIB. With ViAggre, none
of the routers on the data-path need to maintain
the full FIB. A number of techniques are being used
by router vendors to alleviate the impact of routing
table growth, including FIB compression [23] and
route caching [23]. In recent work, Kim et. al. [24]
use relaying, similar to ViAggre’s use of aggregation
points, to address the VPN routing scalability prob-
lem.

Over the years, several articles have documented
the existing state of inter-domain routing and de-
lineated requirements for the future [25–27]; see [26]
for other routing related proposals. RCP [28] and
4D [29] argue for logical centralization of routing in
ISPs to provide scalable internal route distribution
and a simplified control plane respectively. We note
that ViAggre fits well into these alternative rout-
ing models. As a matter of fact, the use of route-
reflectors in design-II is similar in spirit to RCSs
in [28] and DEs in [29].

5 Discussion and Future work

Pros. The ViAggre design presented in this paper
can be incrementally deployed by an ISP since it does
not require the cooperation of other ISPs and router
vendors. What’s more, an ISP could experiment with
ViAggre on a limited scale (a few virtual prefixes
or a limited number of routers) to gain experience
and comfort before expanding its deployment. Also,
the use of ViAggre by the ISP does not restrict its
routing policies and route selection. Actually, design-
I does not modify the ISP’s routing setup and hence
all properties such as convergence times, etc. remain
the same. Finally, there is incentive for deployment
since the ISP improves its own capability to deal
with routing table growth.

Management Overhead. ViAggre imposes a sig-
nificant configuration burden on the ISP. For the
first design, this includes configuring route suppres-
sion on individual routers and configuring LSP ad-
vertisements on the border routers. Further, the ISP
needs to make a number of deployment decisions
such as choosing the virtual prefixes to use, decid-
ing where to keep aggregation points for each vir-
tual prefix, which prefixes to consider popular, and
so on. Apart from such one-time or infrequent de-
cisions, ViAggre may also influence very important
aspects of the ISP’s day-to-day operation such as
maintenance, debugging, etc.

To study this overhead, we have deployed ViAg-
gre on the WAIL testbed [30] comprising of Cisco
7300 routers. We have already developed a tool that
extracts information from existing router configura-
tion files and other ISP databases to generate the
configuration files that would be needed for ViAggre
deployment. We are also developing a planning tool
that would take constraints such as stretch and load
constraints and other high-level goals as its input
and generate ways that an ISP can deploy ViAggre
so as satisfy these. While these tools are specific to
the routers, ISP data and other technologies in our
deployment, we believe that they can buttress our
argument that ViAggre offers a good trade-off be-
tween the management overhead and increased rout-
ing scalability.
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Router changes. Routers can be changed to be
ViAggre-aware and hence, make virtual prefixes
first-class network objects. This would do away with
the configuration complexity that ViAggre entails
and hence, make it more palatable for an ISP. We,
in cooperation with a router vendor, are exploring
this option [31].
Clean-slate ViAggre. Applying the basic concept
of virtual networks in an inter-domain setting to in-
duce a routing hierarchy that is more aggregatable
can accrue benefits beyond shrinking the router FIB.
The idea here is to have virtual networks for individ-
ual virtual prefixes span domains such that even the
RIB on a router only contains the prefixes it is re-
sponsible for. This would reduce both the router FIB
and RIB and in general, improve routing scalability.

To summarize, preliminary results show that an ISP
can use ViAggre to substantially shrink the FIB on
its routers and hence, extend the lifetime of its in-
stalled router base. The ISP may have to upgrade
the routers for other reasons but at least it is not
driven by DFZ growth over which it has no control.
While it remains to be seen whether most, if not all,
of the configuration and management overhead in-
troduced by ViAggre can be eliminated through au-
tomated tools, we believe that the simplicity of the
proposal and its possible short-term impact on rout-
ing scalability suggest that is an alternative worth
considering.
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ABSTRACT
Recent revelations that ISPs selectively manipulate P2P traf-
fic have sparked much public discussion. Underlying this is-
sue is the misalignment of interests between consumers on
one hand who desire bulk transfers at flat rates, and ISPs on
the other hand who are bound by budget and capacity con-
straints. Our thesis is that much of the tension can be alle-
viated by time-shifting traffic away from peak hours taking
advantage of its Delay Tolerant (DT) nature. We propose
two solutions for doing this. The first one offers incentives
to end-users to shift their DT traffic and yet be compatible
with flat-rate charging schemes. The second one posits aug-
menting the network with additional storage in the form of
Internet Post Offices which can let ISPs perform store-and
forward relaying of such DT traffic.

1. INTRODUCTION
The long term planning and deployment of infrastruc-

ture has always been a challenging task that requires
predicting variables and future events that are unknown
when the planning decisions are made – “what will be
the car usage in 5 or 10 years?”, or, “which areas in
the vicinity of a large metropolis will develop more and
thus require new roads and train connection to the city
center’?’. Similar questions are asked in the domain of
networks for things like the future rate needs of resi-
dential and corporate connections, the dimensioning of
backbones, and the peering agreements between ISPs.
Applications, Access, Backbone – Chasing the
ever moving target: Much like in the previous ex-
amples taken from transportation, coming up with ac-
curate predictions for the dimensioning of a network is
a very hard task since there is too much uncertainty
involved. For example, technological advances in ac-
cess and backbone links often occur independently thus
moving the bottlenecks anywhere between the end-user
premises and the the network core [2]. At the appli-
cation layer, the continuous introduction of new appli-
cations like P2P systems, user generated content web-
sites, and multiplayer online games keeps changing the
shape of network traffic matrices over increasingly shrink-
ing time scales. Further, the difficulty of making accu-

rate predictions is made worse by the fact that end-
users are becoming increasingly involved in the intro-
duction of new high bandwidth consuming applications
and data. All the above points illustrate the difficulty of
accurately predicting the future resource requirements
of next generation networks. Therefore, bottlenecks are
expected to keep appearing at one point of the network
or the other and identifying them will continue being a
chase of an ever moving target.

In such a volatile environment, it is important to have
tools for relieving bottlenecks promptly and thus make
time for network dimensioning to come up with more
long term solutions. A prime objective of such tools
would be to promote further the efficient usage of re-
sources under the current triplet of applications, access,
and backbone technology. Resource wastage – often re-
ferred to as “fat” in economics jargon – should be iden-
tified and removed promptly. But where can we find
“fat” on the current Internet?
Delay tolerant applications and traffic: Consider
the familiar example of a user who on receiving a sug-
gestion, or after browsing a collection of media or appli-
cations, starts a large download that can take anywhere
from a few to several hours. This is typically followed
by additional time before the end-user really makes use
of the information, e.g., watch the movie or install and
start using the application. Such Delay Tolerant (DT)
applications and their traffic allow much room for flexi-
ble scheduling and transmission, unlike interactive ones,
like web browsing or video streaming, where requests
and transmissions have to occur nearby in time.

DT applications therefore permit for a time-expansion
of basic Internet scheduling and routing mechanisms.
Internet routing has in the last few years gone through a
spatial-expansion through technologies like overlay rout-
ing [3], anycast routing [4, 5], locality aware P2P net-
work formation [1, 13, 6], etc. Scheduling, however, has
not yet seen its own expansion, as it has been severely
limited within the tight time scales imposed by conges-
tion avoidance through TCP. The latter was designed
under the overarching assumption that communication
is interactive and intolerant to delay, which is not true
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for the aforemention class of DT applications.
As a consequence, both end-users and the network

treat DT traffic like ordinary interactive traffic. Bulk
downloads are initiated and accepted in the network
during the hours of peak load despite the fact that the
information they carry may be consumed several hours
later. In the domain of transportation, such issues have
been resolved through legislation. For example, in many
places supply trucks are not allowed to make deliveries
during commute hours, or access some highways during
peak weekend traffic. On the Internet, however, there is
no mechanism to prohibit DT applications from using
limited resources during peak hours that interactive ap-
plications would value more. In that sense, DT traffic
appears as “fat” in the pipes of ISPs.
Our contribution: In this paper we start by first iden-
tifying two basic causes behind the currently inefficient
handling of DT traffic. The first one is the lack of
appropriate incentives for end-users to self-select and
schedule efficiently the transmission of DT traffic, e.g.,
postpone it until non-peak hours. This is a direct conse-
quence of the prevailing flat-rate charging scheme that
does not reward residential users that make efficient us-
age of network resources. Secondly, we point to a lack
of mechanisms on the part of the network for identify-
ing and handling DT traffic independently of how and
when it is injected by the end-users. We propose two
fixes with different pros and cons.

• Provide incentives under flat-rate charging: We
argue that it is possible to keep flat-rate charg-
ing but still be able to incentivize the end-users
to postpone their DT transfers until times of low
utilization. The trick is to reward them for keep-
ing their traffic low during peak hours, by provid-
ing them with bonus “higher-than-the-purchased”
access rates during non-peak hours. For ISPs this
makes sense since unutilized bandwidth costs noth-
ing, whereas additional bandwidth during peak
hours requires more investment in equipment.

• Allow the network to time-shift the DT traffic: We
propose network attached storage in the form of
Internet Post Offices (or IPOs) that will collect
DT traffic in an opaque way from the end-users,
and perform efficient transmission and scheduling
based on the background load and the peering rela-
tionships between ISPs. We discuss two scenarios,
one in which the local ISP operates the local IPO,
and one in which IPOs are installed and operated
by CDNs specializing in DT transfers. Such CDNs
can become the catalyst for resolving tensions be-
tween ISPs and heavily consuming end-users.

Both solutions modify the flow of DT traffic, the first
one at the source and the second inside the network. In

the remainder of the article, we first discuss the impact
of flat-rate charging on the way that end-users generate
and transmit DT traffic, and then move on to elaborate
on our proposals.

2. FLAT-RATE BROADBAND ACCESS
Despite the strong arguments [7] that economists have

presented against flat-rate charging and in favor of more
elaborate usage-based charging, flat-rate remains ubiq-
uitous and has become a defacto standard for residential
broadband access [10]. Undeniably, most of the appeal
of flat-rate charging stems from its simplicity. It is eas-
ily communicable to the end-users who, in addition, feel
safe by not having to worry about unpleasant surprises
at the end of the month when the bill arrives, some-
thing not at all uncommon under usage-based charg-
ing schemes for other services like electricity and gas.
For network operators, flat-rate charging obliterates the
need to perform complex computations for calculating
the charged amount of each user. On the negative side,
flat-rate introduces the following problems.

• Unfairness: The common monthly amount that
an ISP charges all users depends in the long run
from the level of consumption of individuals and
thus light users end up subsidizing the bandwidth
of heavy users. When the difference between mini-
mum and maximum consumption is not large, e.g.,
as in “all-you-can-eat” restaurants where the size
of the human stomach puts very rigid bounds, then
this is not much of a problem. In broadband ac-
cess, however, as the rates increase, so does the
maximum amount of unfairness due to cross-subsidy.

• Lack of incentives for efficient use of resources:
Flat rate does not offer any incentives to end-
users for making efficient use of network resources.
Thus, even if a user knows that he won’t be able to
watch a movie until late at night or the weekend,
there is no incentive for him not to start the down-
load immediately. The reason is that postponing
the download would place on the user the burden
of having to remember to initiate it after the peak
hours. Such wasteful usage habits combined with
multimegabit Fiber-To-The-Home (FTTH) tech-
nologies can put an all too heavy strain on the in-
frastructure of an ISP. This partially explains why
some ISPs have not yet released FTTH despite it
being already a mature technology for the access.

There exists some partial solutions to these limita-
tions. For example, usually one has the choice of mul-
tiple classes of flat-rate [7], each with different trans-
mission rate and monthly cost. This however requires
users to be able to predict accurately their bandwidth
requirement and be willing to commit to it, as changing
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Figure 1: Architecture for implementing the re-
ward/constant incentive scheme.

plans frequently based on usage habits is cumbersome.
Similarly, some ISPs provide a capped download volume
per month during peak hours and uncapped during off-
peak hours. Although this allows for some flexibility
(e.g., DT downloads can be put on crontab), it still ties
the user to a particular daytime volume, and prohibits
any kind of dynamic adjustment based on current us-
age habits. Unlike these two schemes, our proposal in
the next section gives the end-user a very basic ability
to modulate his available maximum rate according to
his daily usage habits. Borrowing a term from the area
of randomized algorithms, we will argue that network
resource efficiency has much to gain from such an in-
centive scheme that embodies the power of two choices.

3. BUILDING INCENTIVES IN FLAT-RATE
In this section we show how to use the maximum al-

lowed daily download volume as the means for building
an incentive scheme into flat-rate charging.

3.1 Basic idea
A user pays a flat monthly amount for broadband ac-

cess which entitles him to two different usage modes. In
the first one (we will call it constant) the maximum al-
lowed transmission rate has a constant value U through-
out the duration of a day.1 In the second one (we will
call it reward) the maximum allowed transmission rate
has value Un < U during the B “busy hours” of the net-
work, and Ur > U during the remaining 24−B hours of
the day. The user can switch between the two modes on
a day-by-day basis as will be explained next. Reward is
designed to incentivize users to move all or part of their
delay tolerant traffic away from the busy hours. The
idea is pretty simple: by being “nice” to the network
and keeping your rate below Un (hence the subscript
n), you get “rewarded” with a higher rate Ur during
1Henceforth, whenever we refer to the capacity of a link we
mean the maximum of either direction.

the non-busy hours (hence the subscript r). The values
U,Un, Ur, B must satisfy Un ·B+Ur ·(24−B) >> U ·24,
i.e., permit a much higher overall daily transferred vol-
ume under reward than under constant with 100% uti-
lization. P2P users with some ability for “Delayed Grat-
ification” [11] would naturally respond to such a scheme.

The aforementioned example involving only 2 values
(Un, Ur) other than the standard one U , is the simplest
possible reward scheme and as such it has the advantage
of being the most easily explainable to the end-users.
The idea, however, can certainly be generalized by mak-
ing the non-standard rates a function of time, i.e., have
Un(t) and Ur(t) instead of constant values. In this case,
the necessary condition for incentivizing the users to
move their delay tolerant traffic away from the busy
hours becomes:

∫ B

0
Un(t)dt +

∫ 24−B

B
Ur(t)dt >> U · 24.

3.2 Architecture
The previous scheme can be fixed with respect to the

values U,Un, Ur, B, which would be decided once upon
the establishment of a contract between a user and the
ISP. It can be implemented very simply with the inte-
gration of minimal functionality on the user (PC) and
ISP side (wireless router/gateway). For example, a sim-
ple button can be integrated to the user interface, allow-
ing the end-user to select between constant and reward.
Selecting the reward choice would set a self imposed cap
of Un during the busy hours through the OS and thus
help the end-user meet the condition for receiving the
reward rate during the non-busy hours. On the network
side, all that is needed is to measure the transmission
rate during the busy hours, and if it stays below Un,
then reward the user by increasing its allowed rate to
Ur for the rest of the day. This is much simpler than
trying to identify and shape DT traffic using elaborate
deep packet inspection equipment. It leads to a win-
win situation in which users are able to download more
content, whereas ISPs do not need to over-dimension.

Another possibility is to keep only U fixed (going into
to the contract) and communicate Un, Ur, B dynam-
ically to the end-user, letting him select accordingly.
Fig. 1 shows the envisioned architecture. Such a scheme
gives the ISP greater flexibility than the static one. For
example, upon observing high utilization at some part
of the network, the ISP can advertise lucrative “offers”
for high Ur in an attempt to convince as many nearby
users as possible to settle for a lower Un.

One might argue that a similar scheme can be imple-
mented only at the application layer, e.g., within down-
loaders and P2P clients, thereby obliterating the need
for any kind of accounting on the network side. The
problem of such an approach is that it cannot be en-
forced, as there will always be users that will hack the
application and try to get Ur during the entire day.
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4. ADDING STORAGE TO THE ISP: INTER-
NET’S POST-OFFICE

The previous incentive-based scheme requires mini-
mal change in the infrastructure and the protocols used
by an ISP. It rationalizes the use of network resources by
incentivizing the end-users to time-shift their DT high
rate transfers until appropriate times for the network.
The price paid for not having to change the network,
is that it requires end-users to pay some attention and
e.g., decide whether they want to do P2P immediately
or delay it to get higher daily volume. In the first case
they would select the reward scheme through their user
interface, otherwise they would continue with constant.
In this section we look at ways to hide time-shifts from
the end-users.

4.1 A storage enabled ISP architecture
In Fig. 2 we show a high level architecture for a stor-

age enabled network involving the following two new
elements. Internet Post Offices (or IPOs) which are
just storage repositories at the access ISP, i.e., near the
end-users. Since they are co-located, the IPOs can com-
municate with the end-users as fast as the access tech-
nology of the latter allows. There exists no other bot-
tleneck or need for further investment to support such
high rate transfers between the two.

Additionally, there exist Transit Storage Nodes (or
TSNs) located at some PoPs at the backbone of the
ISP, preferably near to peering-points with other net-
works. Of course, between end-user and TSNs, or be-
tween IPOs and TSNs, there can be all sorts of pos-
sible bottlenecks arising either due to congestion [2],
or due to traffic engineering policies [12]. The key idea
here, is to use the IPOs and TSNs to time-shift bulk DT
transfers, and thus avoid congestion and ISP-throttling,
while making the time-shift transparent to the end-users.
The idea makes use of the fact that the price of stor-
age is declining much faster than the price of band-
width [8], especially at the access network. This ap-
proach is significantly different from previous attempts
to tap on unutilized bandwidth (e.g., QBone’s Scav-
enger Service2) that require changing the routers and
cannot perform in-network time-shifting as they lack
network attached storage.

4.2 A fire-and-forget approach to DT transfers
Imagine a user who wants to share with his friends

a large collection of high resolution photographs and
videos from his latest trip or vacations. Large num-
bers of such users having FTTH high rate access pose
a formidable challenge to existing networks that are
not dimensioned for such access rates and content sizes.

2http://qos.internet2.edu/wg/wg-documents/qbss-
definition.txt

Figure 2: High level architecture of a storage
enabled network.

Without substantial investment in upgrades of the back-
bone, the uplinks of DSLAMs, and the peering points
to other networks, an easy solution for ISPs is to roll
out FTTH and police it heavily when DT transfers like
the above get into the way of servicing interactive, non-
DT traffic. Of course, this would immediately trigger
complaints from end-users expecting full FTTH rates
at all times. Are there any other possibilities?

The aforementioned storage enabled architecture based
on IPOs and TSNs suggests one. An end-user can push
his collection of voluminous DT media to a local IPO at
full FTTH rate. Since IPOs may connect directly to the
DSLAMs, this does not put any strain on the rest of the
network. Then the entry IPO can coordinate with other
IPOs and TSNs to see that the collection reaches the
intended recipients. This resembles snail (electronic)
mail, where the end-user just hands in his mail to the
local post office (SMTP server), at which point his di-
rect involvement in the transfer comes to an end. A
new breed of P2P applications can also be developed
to make use of IPOs and TSNs. There are advantages
from this for both the end-user and the network.

The end user: Benefits by pushing the data out of his
computer at full FTTH rate. The end-to-end de-
livery has not been completed yet, but since the
data are DT, what matters for the sender is how
soon they will clear out from his computer and
access line. After that, the user gets back his full
CPU and uplink capacity for interactive tasks that
would otherwise suffer from resource contention
with slow and therefore long lived transfers. If
the computer is a portable one, the user is free to
disconnect and move. Last but not least, the user
can shut the computer down much sooner, thus
saving energy.
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The ISP: Benefits by taking full control of the bulk
transfer from the entry IPO and onwards, i.e.,
where most problems currently exist. The ISP can
use IPOs and TSNs to schedule transfers at times
of low background load. If the receiver is on an
access network attached to the same ISP, then it
can use the receiver’s local IPO to bring the data
down at a time of low utilization for the access net-
work. If the flow has to cross to a different transit
ISP, then this can be done when the corresponding
peering point is least loaded.

5. CDNS AND DT TRAFFIC
The discussion up to now has been limited to ISPs

and end-users. Next, we examine the potential gains
for CDNs from handling DT traffic. We look at two
scenarios based on the source of the DT traffic.

5.1 A CDN for Delay Tolerant Bulk data
Consider a CDN for servicing terabyte-sized Delay

Tolerant Bulk (DTB) data, including scientific datasets,
digitally rendered scenes from movie production stu-
dios, massive database backups, etc. Such a CDN in-
stalls storage nodes at access and transit ISPs from
which it buys bandwidth according to a standard 95-
percentile charging scheme [9]. Store-and-Forward schedul-
ing is used to transfer DTB data between IPOs with the
help of intermediate TSNs.3 Our initial results based on
real traffic traces from more than 200+ interconnection
points of a large transit ISP show that SnF policies can
reduce dramatically the transit costs incurred by End-
to-End (E2E) policies that don’t employ network stor-
age. For example, with SnF we can transfer 100 Tbits
of data from Latin America to Europe in 48 hours at
zero transit cost, whereas an E2E stream of average
rate of around 0.5 Gbps increases the monthly transit
cost by tens of thousands of dollars under current band-
width prices. The advantage of SnF lies on the fact that
it can solve the problem of non-coinciding load valleys
between the uplink of the sender IPO, and the downlink
of a receiver IPO on a different time-zone. We explain
the proposal through an example.

The top row of Figure 3 illustrate the 5-minute ag-
gregate load on the uplink of an ISP in Latin America
(LAT) hosting a sender IPO. The second and third rows
depict the load on the downlinks of two ISPs in Eu-
rope (EU) and China (CH) hosting receiver IPOs. We
have annotated with uvalley(LAT ) the time at which
the uplink of LAT is least loaded and similarly for the
downlinks of EU and CH. One can easily observe that
due to time-zone differences, these valleys do not co-
incide. In the case of LAT and CH, the load valley
3For this example we have assumed that there are no bot-
tlenecks inside the transit provider and thus it suffices to
consider a single TSN.
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Figure 3: Time series plot of the uplink load of a
sender in LAT and receivers in EU and CH. The
uplink valley of LAT finds EU with substantial
load and CH with peak load.

of the sender actually coincides with the peak of the
downlink of the receiver. In this setting, E2E transfers
will have to overlap with either a highly loaded uplink,
or a highly loaded downlink and, thus, create either
additional monetary costs by pushing the 95-percentile
load based on which ISPs pay for transit, and/or ob-
struct the QoS of other interactive traffic with which the
DTB traffic gets multiplexed. An SnF transfer through
a TSN can do much better in this setting. It uses the
uplink load valley to push data from LAT to a TSN on
the transit ISP. The DTB data remain buffered there
until the beginning of the load valley of the downlink
of the receiver, at which point they are pushed to their
final destination (EU or CH).

Examining all the pairs from the 200+ peering points
of our transit provider we found that more than 50% of
the busiest pairs had valleys that were apart for at least
two hours, and thus cases like the aforementioned exam-
ple were not at all uncommon. Non-coinciding valleys
appear frequently, even within the same or nearby time-
zones. This happens because networks of different type
can peak at different hours, e.g., a corporate network
typically peaks during work-hours, whereas an ADSL
access network typically peaks in the late evening.

5.2 A CDN for Delay Tolerant End-User data
Next we look at what CDNs can do for residential

end-user DT traffic. The model is similar to Fig. 2
with the difference that storage nodes are not managed
by the ISP, but by an independent CDN which, unlike
the ISP, has global coverage with PoPs on multiple net-
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works. Again IPO nodes are used for collecting end-user
DT data at full FTTH rate, whereas other intermediate
IPOs and TSNs help complete the delivery. The CDN
can sell this service to content creators and give it for
free to end-users. In addition to its obvious benefits for
content creators and end-users, the operation of such a
CDN adds value to the ISPs. The reason is that since
it receives end-user DT traffic, the CDN can transmit
it in an ISP-friendly manner unlike most end-user ap-
plications. For example the CDN can:

Prefer peering to transit links: Having post offices
at multiple ISPs, the CDN can try to create an
end-to-end path between a sender and a receiver
that involves mostly peering links between neigh-
boring ISP, over which traffic is exchanged without
monetary transit costs. Transit links can be used
only in cases that alternative paths through peer-
ing links do not exist or are severely congested.4

Avoiding the hours of peak load: The CDN can take
advantage of the DT nature of the traffic to avoid
times of high utilization. In the case of transit
links this protects against increases of the 95-percentile
of send traffic, and corresponding increases of monthly
charging bills. In the case of peering links, it pre-
serves the QoS of the background traffic and avoids
the need to upgrade the link and incurring addi-
tional equipment and maintenance costs.

We believe that establishing and demonstrating the
above practices would permit a CDN operator to achieve
a symbiotic relationship with the ISP. The ISP would
benefit by having the heat of end-user DT traffic taken
away from it thanks to the CDN. The CDN would ben-
efit by obtaining cheap flat-rate or even free access to
ISP bandwidth under the conditions of ISP-friendliness
discussed above. Notice that unlike Sect. 5.1 in which
the CDN was introducing new exogenous DTB traffic to
the ISP, and thus had to pay according to 95-percentile
charging for it, now the CDN is just servicing endoge-
nous end-user DT traffic, including high definition video
from P2P, that already flows in the ISP.

6. CONCLUSIONS
In this article we claim that many of the tensions that

currently exist on the Internet are due to wasteful us-
age of resources during the hours of peak load. A first
step towards reducing such wastage is to shift what we
4Notice that although no immediate transit cost is paid for
crossing peering links, there still exist implicit, albeit real
costs. For example, if the peak utilization becomes too high
due to the additional delay tolerant traffic then the ISPs will
have to upgrade the speed of their peering and thus incur
capital and maintenance costs in order to preserve the QoS
offered to their clients. We consider this next.

define as Delay Tolerant traffic to non-peak load hours.
We have proposed two solutions for this, one by offering
flat-rate compatible incentives to the end users, and a
second one based on the addition of network attached
storage. The first solution has the advantage of requir-
ing minimal change to the existing network, but requires
a small involvement from the end-users. The second so-
lution is completely transparent to the end-users but
requires the addition of network attached storage. The
latter proposal becomes economically efficient since the
price of storage has been declining much faster than the
price of network equipment, especially at the access and
regional network.
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ABSTRACT
On the Internet today, a growing number of QoS sensitive
network applications exist, such as VoIP, imposing more
stringent requirements on ISPs besides the basic reachabil-
ity assurance. Thus, the demand on ISPs for Service Level
Agreements (SLAs) with better guarantees is increasing.
However, despite overprovisioning in core ISP networks, re-
source contention still exists leading to congestion and as-
sociated performance degradations. For example, residential
broadband networks rate-limit or even block bandwidth in-
tensive applications such as peer-to-peer file sharing thereby
violating network neutrality. In addition, traffic associated
with specific applications, such as Skype, could also be dis-
criminated against for competitive business reasons.

So far, little work has been done regarding the existence
of traffic discrimination inside the core of the Internet. Due
to the technical challenges and widespread impact, it seems
somewhat inconceivable that ISPs are performing such fine-
grained discrimination based on the application content. Our
study is the first to demonstrate evidence of network neu-
trality violations within backbone ISPs. We used a scalable
and accurate monitoring system – NVLens – to detect traffic
discrimination based on various factors such as application
types, previous-hop, and next-hop ASes. We discuss the im-
plication of such discrimination and how users can counter
such unfair practices.

1 INTRODUCTION
The topic of network neutrality on today’s Internet is a highly
contentious one. Previously, users assumed ISP networks
are neutral to carry traffic without any preferential treatment.
Edge customers can instrument their own policies for traf-
fic management by for example blocking certain traffic us-
ing firewalls at the edge of the Internet. So customers ex-
pected that ISPs would not treat traffic differently based on
properties other than the basic information required for for-
warding, e.g., destination IP address. In violation of network
neutrality, traffic properties suspected to be used to perform
discrimination include application types inferred from port
numbers or payload data, previous-hop network, and next-
hop network.

Various residential broadband networks, such as Com-
cast, are known to be violating network neutrality, by re-

stricting the bandwidth usage of peer-to-peer file sharing ap-
plications. Network neutrality has different technical def-
initions and feasibility in various types of network mod-
els [1, 2]. Several research proposals exist for counteract-
ing discrimination relying on encryption and multipath rout-
ing [3, 4], along with ideas to block traffic via auctions un-
der the bandwidth shortage [5]. Given the potential detri-
mental effect on traffic which can be given lower priority,
it is critical for end-users to first detect which ISP is vio-
lating network neutrality and to understand the policies for
discriminating against specific traffic types. Beverly et al.
presented the first study of the port blocking behavior that vi-
olates neutrality [6]. Related to our work, POPI is a tool for
determining the router forwarding policy via end host mea-
surements [7], but it only focuses on preferential treatment
based on port numbers. Their methodology of saturating the
link with high traffic volume is unsuitable for backbones.

No detailed and comprehensive study on the current
practice of traffic discrimination, particularly inside the core
ISPs, currently exists. And yet, traffic differentiation in the
core has a much wider scope of impact, as such policies af-
fect much more traffic compared to policies near the edge
of the Internet. Knowing which ISPs perform discrimination
and how they perform it is a critical first step towards identi-
fying alternatives to address the network neutrality issues.

Our work is the first to demonstrate concrete evidence
of network neutrality violations in backbone ISPs and ana-
lyze the extent of their violations. We developed a scalable
and accurate distributed measurement methodology called
NVLens(Neutrality Violation Lens1) to monitor ISP’s loss
and delay behavior in order to identify traffic discrimination
based on factors such as applications, previous-hop and next-
hop ASes. Given the initial report on discrimination, we per-
formed selective drill-down to deduce how discrimination is
implemented.

Unlike ISP-centric SLA monitoring, which requires ac-
cess to proprietary data, NVLens relies on minimal network
cooperation and is entirely end system based, leading to
easy deployment and accurate observation from the end sys-
tem’s perspectives. NVLens can be used as a simple tool
by end users to detect network neutrality violation and simi-
larly SLA compliance of any ISP. By studying 19 large ISPs
covering major continents including North America, Europe,
and Australia over several weeks, we discovered ISPs some-

1The common translation of “night vision lens” is also relevant here, as
our monitoring continuously covers both day and night.
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Type Examples
Application
types

packet header field (e.g., src/dst port numbers, proto-
col type)

Application
properties

data content, application protocol header (e.g., HTTP
header, IPSec header)

Network
policies

routing info (previous-hop, next-hop AS, routing en-
try)

Traffic
behavior

flow rate, packet size, flow duration, fragment bit

Available
resources

router state (load, memory), time of day, location (e.g.,
PoP)

Table 1: Information commonly used to determine policies for discrimina-
tion.

times do give different priority to traffic coming from differ-
ent neighbors (previous-hop ASes). Discrimination based on
the next-hop AS is less common. We also observed different
priority for traffic associated with UDP and specific applica-
tions such as BitTorrent compared to HTTP traffic. The loss
rate increase for discriminated traffic can be as high as 8%
with up to 500ms increase in RTT.
2 NET NEUTRALITY VIOLATION
In this study, we define network neutrality as ISPs giving
equal treatment to packets regardless of their application
content, application types, and packet sources or destina-
tions. Any differentiation behavior that violates network
neutrality is called discrimination. Note that we broaden the
previous definition [2] by not singling out customers who
may receive better treatment. Therefore, the observed per-
formance difference can result from distinct business con-
tracts between provider and its customers. It is debatable
that whether this type of discrimination should be consid-
ered as neutrality violation. In this work we also report such
discrimination to enable different interpretations.

Packets contain plenty of information that an ISP can use
to construct discrimination policies. Table 1 shows the po-
tential factors used to determine the discrimination policy.
First, an ISP may provide differentiated service depending
on the application type for security or business reasons. Ap-
plication types can be determined from transport layer proto-
col fields or application layer content information [8]. Even
with encrypted traffic, such discrimination can be made us-
ing more sophisticated traffic flow information [9]. Sec-
ond, an ISP can discriminate against traffic due to business
relationships, based on their source/destinations or incom-
ing/outgoing networks. This information can be easily gath-
ered from packet headers and routing information. Third, an
ISP can selectively enable discrimination depending on the
resource conditions, e.g., when resources are limited as indi-
cated by high link utilization.

The feasibility of implementing packet discrimination in
a backbone ISP network with many high-speed links is ques-
tionable due to the need to perform additional per packet
processing. We discuss several techniques that an ISP can
employ to implement relevant policies today.

Today’s router already has support for various queuing
mechanisms to fulfill the need of traffic engineering, ensur-

Ingress router
Internal routers

Egress routerISP

action: packet marking

action: per-hop queuing/dropping

Figure 1: An example of discrimination implementation.

ing quality of service and security guarantees. Figure 1 illus-
trates a common architecture for implementing the discrim-
ination within an ISP. The ingress border routers perform
traffic classification by marking packets according to priori-
ties, which are determined by packet fields such as protocol,
source, and destination. The marking usually occurs on the
Type-of-Service (TOS) field in the IP header. The internal
routers can carry out different queuing and dropping deci-
sions according to the packet classification encoded within
TOS by the border routers [10]. Different queuing mecha-
nisms provide various services to traffic based on its prior-
ity, e.g., priority queuing, proportional share scheduling, and
policing [11]. These mechanisms differ in details of how and
when the differentiation is carried out.

Besides router based mechanisms relying on packet
header information, deep packet inspection (DPI) tools [12]
allow ISPs to classify applications using packet content to
understand application types. Although DPI devices are usu-
ally too expensive to be widely deployed, some current prod-
ucts claim to support up to 100 Gps links [13, 14] capable of
searching for patterns in the payload using hardware support.

Given the feasibility of discrimination deployment, we
studied all the factors shown in Table 1 except for the dis-
crimination based on traffic behavior due to the limited re-
source of end-host based probing. This type of discrimina-
tion is also more difficult to implement by ISPs due to re-
quired per flow state information. NVLens enables us to dis-
cern which factor(s) may influence ISP’s policies for pref-
erential treatment of different classes of traffic. The de-
sign is extensible to other factors once they are known. The
goal of detecting all these types of discrimination guides the
methodology design of probing strategy and the probe packet
composition in NVLens .
3 MEASUREMENT METHODOLOGY
This section describes the design of NVLens and illustrates
how to monitor networks for neutrality compliance from end
systems without any ISP cooperation. NVLens has the ca-
pability to detect three main types of network neutrality vi-
olations. Figure 2 illustrates the collaborative probing used
to detect neutrality violations by a particular ISP based on
factors such as application types and network policies (de-
scribed in Table 1). Multiple ISPs were probed in parallel si-
multaneously to allow for accurate comparison. As shown in
the figure, discrimination detection focuses on ISP W based
on different traffic properties, i.e., towards different next-hop
ASes, from different previous-hop ASes, or based on differ-
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Figure 2: Collaborative probing to discover neutrality violations of different types.
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ent application types.
Note that we focus on differences in performance met-

rics observed to identify traffic differentiation performed by
the routers in ISPs. Many confounding factors could also
cause differences in observed performance. First, different
network paths in one ISP have different load leading to dif-
ferent performance observed. Even from one ingress to same
egress, many equal-cost paths exist. Second, different appli-
cation properties, e.g., packet size, packet rate, can result in
different performance measured. Third, external measure-
ment artifacts, e.g., heavily-loaded probing hosts, lossy re-
verse path, are also likely to create differences.

To rule out the impact of all these factors, we design our
methodology carefully to eliminate the impact of most fac-
tors. For factors that are difficult to control, e.g., impact of
equal-cost paths, we use controlled experiments to confirm
they would not introduce any systematic bias. In the follow-
ing, we introduce our novel methodology to detect neutrality
violation with low overhead.

3.1 Collaborative probing optimization
Probing overhead is always a concern in any active mea-
surement study. For the purpose of discovering neutrality
violation, it is particularly important to keep probing hosts
lightly-loaded and to ensure short probing intervals. Other-
wise, different performance might be caused by the heavily-
loaded hosts or measurement conducted at different time pe-
riods. We use collaborative probing to ensure low probing
overhead.

A typical backbone ISP consists of multiple PoPs (Points
of Presence) at several geographic locations. In order to
quantify the overall network neutrality compliance of an ISP
and avoid the potential bias introduced by any particular
path, NVLens should cover a reasonably large fraction of
paths between distinct PoP pairs. Therefore, path selection
strategy is a key issue for NVLens. Given a list of backbone
ISPs, we couldn’t afford to continuously probe all the desti-
nation prefixes on the Internet from all the probers. Instead,
we devised an intelligent path selection strategy as follows
for a probing interval: 1) Each three-tuple path (Pi, Pe, d) is
traversed at least n times by probes from different probers;
and 2) A prober does not conduct more than m probes. Here,
s is a prober, d is a destination IP address, and Pi and Pe are
the ingress and egress points in the target ISP respectively.
Previous work [15] has shown this problem is an instance of

the set covering/packing problem [16] for which we use a
greedy algorithm as an approximation.
3.2 Loss rate and RTT measurement
NVLens measures both loss rate and roundtrip time (RTT)
of a path which are simple performance metrics. To com-
ply with the resource limits at each host, we take two steps
to reduce probing overhead. First, NVLens only probes the
hops that map to an ingress or an egress in one of the tar-
get ISPs instead of probing all the hops along a path. Since
we are only interested in identifying ISP internal traffic dis-
crimination between ingress-egress pairs, there is no need
to probe other hops. Second, to measure the loss rate and
RTT to a particular hop, NVLens sends probe packets with
pre-computed TTL value which is expected to trigger ICMP
time exceeded response from the corresponding router. In
essence, the packet is similar to traceroute probes. However,
since loss may occur in both directions, we use relatively
large probe packets to increase the likelihood of inducing
loss on forward paths only, which has been widely adopted
in previous studies [17, 18]. NVLens probes each hop 200
times so that it can detect minimum loss rate of 0.5%. To
reduce the chance of triggering ICMP rate limiting, NVLens
probes each hop only at most once per second.
3.3 Application-specific probing
We use NVLens to explore how backbone ISPs preferentially
treat various real-time and QoS sensitive applications. We
choose five representative applications with distinct traffic
characteristics in our study: UDP, HTTP, BitTorrent (P2P file
sharing), Skype (VoIP), and World of Warcraft or WoW (on-
line gaming). To avoid the overhead of comparing each pair
of applications, we use HTTP traffic as the baseline. Since
HTTP is the most widely-used Internet application, we as-
sume it does not receive any preferential treatment, i.e., rep-
resenting the normal performance that most applications will
experience.

The following steps are taken to eliminate the impact of
all possible confounding factors we can think of. First, we
classify applications into two groups: large packets of 200
bytes (HTTP, UDP, BitTorrent), small packets of 80 bytes
(HTTP, Skype, World of Warcraft). This classification is
based on empirical observation of corresponding applica-
tions, while observing the bandwidth constraints of probe
hosts. We use controlled experiments to verify that most ob-
served packet loss occurred on forward paths. We measure
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three types of application at the same time, using the same
probe hosts, for the same paths, with the same packet size.

To accurately represent the application behavior, we con-
struct application-specific packets with the corresponding
payload captured from real application traces. This is espe-
cially important for proprietary applications such as Skype
or WoW whose protocols are not not publicly known. Given
that data packets are often exchanged after a few control
packets, we first transmit 9 to 25 small application-specific
control packets at one packet per second rate. These packets
help ISPs identify and potentially discriminate subsequent
data packets. Control packets are identified using either
known protocol specification (e.g., for BitTorrent) or timing
and packet size behavior (e.g., for Skype), as there is usually
a large gap between the exchange of control and data pack-
ets in both interpacket timing and packet size. Also note that
control packets are constructed with sufficiently large TTLs,
meaning all the routers along the path up to the last ISP’s
egress router can observe the control packets in case routers
use such information to store state needed for traffic discrim-
ination2.

4 EXPERIMENTAL RESULTS
This section presents our experimental results that provide
insights on how network neutrality is violated on today’s In-
ternet. To ensure precise and accurate analysis, we perform
statistical tests on a large number of samples to detect traf-
fic discrimination. This section provides concrete evidence
of discrimination in several large ISPs based on routing and
traffic content. The next section examines in greater depth
the mechanisms and policies used for carrying out traffic dif-
ferentiation.

4.1 Data processing
Each data point is obtained by sending 200 packets from a
probing source host s to a destination IP address d, traversing
a target ISP I using packets representing a particular applica-
tion a. A data point at time interval i is denoted as l

{s,d,I,a,i}

(percentage of lost packets relative to the 200 probing pack-
ets) and d

{s,d,I,a,i} (average delay of 200 delay measure-
ments).

We define two key variables: a path pa which de-
fines the smallest path unit for discrimination analysis and
an aggregation element agg which excludes certain vari-
ables in the definition of corresponding pa. An agg helps
identify the relevance of some factor in discrimination.
For example, for application based discrimination analy-
sis, pa=(s, d, I, a) and agg=(s, d, I). To detect whether dis-
crimination exists between applications a1 and a2 on the
path from s to d in ISP I , we compare the performance of
pa1=(s, d, I, a1) and pa2=(s, d, I, a2). For previous-hop AS
based discrimination analysis, pa=(ASp, Pi, Pe, ASn) and
agg=(Pi, Pe, ASn). ASp and ASn are the previous-hop and

2The TTLs are not too large to avoid potential complaints from edge
networks.

next-hop ASes of I respectively. Pi and Pe are the ingress
and egress points of I respectively. These notations will be
used in the following analysis.

Prior to performing discrimination analysis, we filter
measurement noise caused by resource competition on or
near a host by identifying high loss rates on many paths that
share the same host. We also filter noise caused by ICMP
rate limiting by identifying high loss rates that exceed the
long-term average plus three times the standard deviation.

4.2 Statistical test to infer discrimination
Assuming random noise has roughly the same impact on the
data points measured on any path, we apply statistical tests
on several data points to identify consistent performance dif-
ferences caused by traffic discrimination rather than due to
random noise. There are quite a few standard hypothesis
tests that compute the statistical significance of the differ-
ence between the mean values of two data sets. T-test, the
most commonly-used one, requires the data sets under test to
follow normal distribution which may not hold for loss rate
and delay distributions. So instead, we apply the Wilcoxon
signed-rank test [19] and the permutation test [20]. Neither
test relies on any assumption of the input data distribution.
This is a standard approach for testing the difference between
two distributions without any assumptions on the properties
of the distributions.

Our input data consists of two sets of data points for the
path pair pa1 and pa2 respectively, where pa1 and pa2 share
a common agg. First, we calculate the difference between
each pair of data points after each set is sorted numerically:
zi = xi − yi. For the resulting difference set Z, we test the
hypothesis that meanz 6= 0 using the Wilcoxon test. Then
we permute half of the data points and apply Wilcoxon test
on the permuted set. The permutation tests are repeated 400
times. If both the Wilcoxon and the permutation tests are
passed with 95% significance, we determine that discrimina-
tion exists between pa1 and pa2.

4.3 Characterization of discrimination
We have implemented NVLens on the PlanetLab
testbed [21]. We use all the available PlanetLab hosts,
roughly 750 of them, as probers covering about 300 distinct
sites. It has been fully operational for more than five weeks
to monitor 19 ISPs.

Table 2 illustrates the results based on the loss rate met-
ric. Similar results based on the latency metric are omitted
due to the lack of space. For application based discrim-
ination, the baseline application for comparison is HTTP.
For each path, we also collect the data points for other ap-
plications, e.g., BitTorrent, and compare the loss rate with
the HTTP loss rate measured during the same period. For
previous-hop AS based discrimination, we compare path
pairs that share the same agg=(Pi, Pe, ASn) but from dif-
ferent ASp.

Table 2 summaries our main findings regarding the ab-
solute number and percentage of path pairs that pass the
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ASN ISP Tier Application/protocol types Previous-hop Next-hop Same AS
name BT UDP Skype Game P-P P-P-AS P-P AS-P-P AS-P-P-AS

209 Qwest

1

10 , 1 0 0 0 8 , 1 36 , 0.2 1 , 0.1 5 , 0.03 6,0.1
701 UUNet 29 , 0.9 90 , 3.6 0 0 89 , 3.5 633 , 3.6 13 , 0.5 38 , 0.2 92,0.5
1239 Sprint 4 , 0.3 31 , 3.5 3 , 0.2 0 40 , 2.7 315 , 1.1 4 , 0.2 19 , 0.1 0
1668 AOL Transit 0 0 0 1 , 0.5 4 , 1.7 24 , 0.9 0 0 20,0.3
2914 Verio 13 , 1.4 66 , 6.8 18 , 1.5 0 33 , 3.4 110 , 0.4 10 , 1.1 38 , 0.1 0
3356 Level3 0 1 , 0.05 0 0 109 , 6 746 , 1 2 , 0.1 7 , 0.01 9,0.1
3549 Global Crossing 14 , 1.7 0 0 2 , 0.2 34 , 3.2 293 , 0.6 30 , 3.1 206 , 0.5 0
3561 Savvis 0 1 , 0.05 0 0 16 , 2.7 254 , 1 3 , 0.5 25 , 0.1 33,0.1
7018 AT&T 0 2 , 0.1 0 0 22 , 1 330 , 1 0 0 0
2828 XO

2

0 0 0 0 0 0 0 0 0
2856 British Telecom 0 45 , 4.5 0 0 15 , 1.5 45 , 0.4 2 , 0.2 6 , 0.02 40,1
3257 Tiscali 221 , 8 0 17 , 1 0 21 , 3 184 , 3 2 , 0.2 6 , 0.1 0
3320 Deutsche Telekom 6 , 0.4 0 0 0 5 , 0.4 26 , 0.2 0 0 11,1
5511 France Telecom 9 , 1 0 29 , 3 0 10 , 1 38 , 0.3 0 0 13,1
6395 Broadwing 0 0 0 0 2 , 0.2 5 , 0.09 0 0 0
6453 Teleglobe 0 68 , 6 0 11 , 1 17 , 1 68 , 0.6 0 0 3,0.2
16631 Cogent 0 0 4 , 0.05 0 70 , 4 213 , 0.8 55 , 3 134 , 0.2 94 , 0.3
6461 AboveNet 3 0 24 , 2.5 0 0 8 , 0.8 37 , 0.4 0 0 0
11537 Abilene 0 0 0 0 0 0 0 0 0

Table 2: Statistical test for loss-based discrimination: discriminated path pairs in absolute number, percentage(%).

statistical test. These two numbers illustrate whether dis-
crimination exists and how widely it is detected in an ISP.
Surprisingly, evidence exists for traffic discrimination within
backbone ISPs. UUNet, Tiscali, Sprint, Level3, Savvis, and
AT&T all have hundreds of path pairs that exhibit previous-
hop AS based discrimination. The bold numbers highlight
this evidence. Next-hop AS based discrimination is far less
prevalent, probably due to the ease of implementation and ef-
fectiveness in managing internal resources for the previous-
hop based approach. An ingress router can easily mark pack-
ets based on their incoming interfaces. There also appears to
be application based discrimination, in particular against Bit-
Torrent and UDP traffic. We found one ISP, Tiscali, which
exhibits strong evidence of discrimination against BitTorrent
traffic. Figure 3 shows significant loss rate difference for the
discriminated path pairs: at least 30% of the path pairs have
loss rate differences ranging from 3% to 8%.

ISPs usually have incentives to give customers high
priority for business reasons. To confirm this claim, for
previous-hop based discrimination, we further analyze the
relationship between the previous-hop AS and the ISP per-
forming discrimination. We employ the commonly used
Gao’s relationship inference results [22]. Among the
previous-hop discrimination, we found that 51% of path
pairs involve ISPs favoring their customers’ traffic over
peers’ traffic. 10% of the path pairs gave traffic from siblings
higher priority over customers and peers. We also found
many instances of particular peers being given preferential
treatment over other peers. For example, among UUNet’s
peer, Level 3 and Savvis receive better treatment than other
peers.

To further confirm that previous-hop discrimination in-
deed exists, we apply the same statistical tests to path pairs
that share the same (ASp, Pi, Pe, ASn) using UDP traffic,
which should not be affected by previous-hop or next-hop
AS based discrimination. The last column in Table 2 pro-

ASN % TOS-marked path pairs % discriminated path pairs
with discrimination matching TOS rules

209 2.1 2.9
701 71 45
1239 16 11
1668 80 76
2914 95 89
3356 92 80
3549 81 70
3561 48 35
7018 90 77
2856 56 41
3257 84 59
3320 0 0
5511 60 17
6453 9 11
16631 91 55
6461 9 6

Table 3: Correlation between loss based discrimination and TOS difference.

vides the absolute number and percentage of such path pairs
that pass the tests. In most cases, they are much smaller than
the numbers in the previous-hop column, suggesting that the
loss rate difference between path pairs are more likely caused
by previous-hop AS based discrimination as opposed to ran-
dom noise.

5 IN-DEPTH ANALYSIS
Some routers mark the Type of Service (TOS) bit in order to
provide different levels of service within an ISP. We study to
what extent the loss rate discrimination can be explained by
the difference in TOS value. Note that our probing packets
trigger ICMP time exceeded messages from routers. These
messages include the IP header of the original probing pack-
ets, which reveals the TOS value of the original probing
packets marked by the routers. This allows us to correlate the
loss rate difference with TOS difference for any path pair.

While a large TOS value does not always imply high pri-
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ority, we assume an ISP has a consistent rule of mapping a
TOS value to a fixed priority. Before performing a correla-
tion, we need to determine this rule. Starting with all the
path pairs that pass the discrimination tests, we obtain all the
distinct TOS values observed in the ISP. We then construct
a mapping from TOS value to the priority it stands for. The
mapping is constructed in a way to best explain the loss rate
difference between all the discriminated path pairs. For ex-
ample, if TOS value x stands for higher priority, then paths
marked with x should experience lower loss rate.

Table 3 illustrates the correlation results between loss
rate discrimination and TOS difference. The second column
indicates the percentage of TOS-marked path pairs that ex-
hibit the correct loss rate discrimination. And finally, the
third column shows the percentage of discriminated path
pairs that match the inferred TOS rules. Both percentage
numbers are high for a few ISPs, e.g., AS1668, AS2914,
AS3356, AS3549, and AS7018, strongly indicating TOS
value is used for discriminating against traffic inside these
ISPs. We also check the temporal stability of TOS marking
and find the marking of 99.9% of the paths does not change
within the six-day analysis.

For application based discrimination, we conduct con-
trolled experiments in order to understand how ISPs perform
the discrimination. We vary our probing by using a different
port, zeroing the application payload, or bypassing the initial
control messages. We study the BitTorrent traffic discrimi-
nation in Tiscali as an example. We studied the likelihood
that the discrimination is performed based on port number.
By changing the port from the default BitTorrent port to 80,
the number of discriminated path pairs drops by 50%. Zero-
ing payload or bypassing control messages has a negligible
effect.
6 DISCUSSION
Besides detecting neutrality violations, NVLens can further
identify the policies used by the ISPs to perform traffic dif-
ferentiation and reveal other relevant information such as the
location of enforcement, time-of-day effect, and relative ver-
sus absolute differentiation. The technique can be extended
to discover other types of discrimination, e.g., IPSec vs. non-
IPSec. Such information can be used by end-systems to
make more informed decisions for selecting routes and ISPs,
applying encryption or routing through proxies to overcome
some of this discrimination.

Even if ISPs are aware of techniques used by NVLens
to perform neutrality violation detection, they cannot easily
evade our probing. The probe packets are constructed using
real traffic traces and are difficult to distinguish from actual
data traffic. Unless ISPs perform stateful TCP flow analysis,
it is challenging to identify and preferentially treat our probe
traffic. In the future, we can further use two-end controlled
experiments to mimic the TCP states.

7 CONCLUSION
In this paper we presented the design and implementation of
the first deployed system to accurately and scalably detect
network neutrality violations performed by backbone ISP
networks. Using collaborative probing from end hosts with
innovative application-specific probing on carefully selected
network paths, we demonstrate the surprising evidence of
traffic discrimination carried out by today’s backbone ISPs.
NVLens has been operational on PlanetLab for five weeks
and is capable of monitoring 19 large backbone ISPs simul-
taneously for neutrality violations detection using loss rate
and delay as performance metrics. In addition to detecting
network neutrality violation, we perform in-depth analysis
to further examine the discrimination policies. Our work
demonstrates the feasibility of detecting network neutral-
ity violations in backbone ISPs entirely from end systems
and presents an important step to attain more accountability
and fairness on today’s Internet. To devise countermeasures
against ISPs’ action of network neutrality violations, detec-
tion is an indispensable first step, and our proposed system
NVLens is a promising approach.
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ABSTRACT

We present NANO, a system that establishes whether per-
formance degradations that services or clients experience
are caused by an ISP’s discriminatory policies. To distin-
guish discrimination from other causes of degradation (e.g.,
overload, misconfiguration, failure), NANO uses a statisti-
cal method to estimate causal effect. NANO aggregates pas-
sive measurements from end-hosts, stratifies the measure-
ments to account for possible confounding factors, and dis-
tinguishes when an ISP is discriminating against a particular
service or group of clients. Using simulation we demonstrate
the promise of NANO for both detecting discrimination and
absolving an ISP when it is not discriminating.

1. Introduction

In late 2005, Ed Whitacre sparked an intense debate on
network neutrality when he decried content providers “us-
ing his pipes [for] free”. Network neutrality says that end
users must be in “control of content and applications that
they use on the Internet” [1], and that the ISPs respect that
right by remaining neutral in treating the traffic, irrespec-
tive of its content or application. This paper does not take a
stance in this debate, but instead studies a technical question:
Can users in access networks detect and quantify discrimi-
natory practices of an ISP against a particular group of users
or services? We define any practice by the ISP that degrades
performance or connectivity for a service as discrimination
or violation of network neutrality. We refer to such viola-
tions as discrimination. We argue that, regardless of whether
or not discrimination is ultimately deemed to be acceptable,
the network should be transparent; that is, users should be
able to ascertain the behavior of their access ISPs.

Unfortunately, because ISP discrimination can take many
forms, detecting it is difficult. Several ISPs have been in-
terfering with TCP connections for BitTorrent and other
peer-to-peer applications [3]. Other types of discrimination
may include blocking specific ports, throttling bandwidth, or
shaping traffic for specific services, or enforcing traffic quo-
tas. Existing detection mechanisms actively probe ISPs to
test for specific cases of discrimination: Glasnost [3], auto-
mates detection of spurious TCP reset packets, Beverly et

al. [8] present a study of port-blocking, and NVLens [10]
detects the use of packet-forwarding prioritization by ISPs
by examining the TOS bits in the ICMP time exceeded mes-
sages. The main drawback of these mechanisms is that each
is specific to one type of discrimination; thus, each form of
discrimination requires a new test. Worse yet, an ISP may
either block or prioritize active probes associated with these
tests, making it difficult to run them at all.

If end users could instead somehow detect discrimination
by observing the effect on service performance using pas-

sive, in-band methods, the detection mechanism would be
much more robust. Unlike active measurements, ISPs can-
not prioritize, block, or otherwise modify in-band measure-
ments. To achieve this robustness, we use a black-box ap-
proach: we make no assumptions about the mechanisms for
implementing discrimination and instead use statistical anal-
ysis primarily based on in situ service performance data to
quantify the causal relationship between an ISP’s policy and
the observed service degradation.

In this paper, we present the design for Network Access
Neutrality Observatory (NANO), a system that infers the ex-
tent to which an ISP’s policy causes performance degrada-
tions for a particular service. NANO relies on participat-
ing end-system clients that collect and report service per-
formance measurements for a service. Establishing such a
causal relationship is challenging because many confound-
ing factors (or variables) that are unrelated to ISP discrimi-
nation can also affect the performance of a particular service
or application. For example, a service may be slow (e.g.,
due to overload at a particular time-of-the-day). A service
might be poorly located relative to the customers of the ISP.
Similarly, a service may be fundamentally unsuitable for a
particular network (e.g., Internet connectivity is not suitable
for VoIP applications in many parts of the world).

A necessary condition for inferring a valid causal relation-
ship is to show that when all the other factors are equal, a
service performs poorly when accessed from an ISP com-
pared to another ISP. The main challenge in designing NANO

is to create an environment where all other factors are in fact
equal. Creating such an environment requires (1) enumer-
ating the confounding factors; (2) establishing a “baseline”
level of performance where all factors besides the confound-
ing variables are equal. Unfortunately, the nature of many
confounding factors makes it difficult to create an environ-
ment on the real Internet where all other factors, except for
an ISP’s discriminative policy and service, would be equal.
Instead, to correctly infer the causal relationship, we must
adjust for the confounding factor by creating strata of clients
that have “similar” values for all factors except for their ac-
cess network. Our approach is based on the theory of causal
inference, which is applied extensively in other fields, in-
cluding epidemiology, economics, and sociology.

This paper is organized as follows. In Section 2 we
overview necessary background for establishing a causal
relationship between ISP policy and service performance
degradation and formalize the problem. In Section 3, we
describe the steps in the causal inference, the confound-
ing variables for the problem, and the NANO architecture
for collecting and processing the necessary data. Section 4
presents simulation-based results, and Section 5 concludes
with a discussion of open issues and a research agenda.
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2. Background and Problem Formulation

In this section, we formalize the definitions and basic con-
cepts used for establishing ISP discrimination as the cause
of service degradation. We describe the concept of service,
service performance, ISP, and discrimination; the inference
of causal effect, how it relates to association and correla-
tion; and finally, approaches for quantifying causal effect.
We also formalize the application of causality to detecting
ISP discrimination.

2.1 Definitions

Service and Performance. A service is the “atomic unit”
of discrimination. An ISP may discriminate against traffic
for a particular service, e.g., Web search, traffic for a par-
ticular domain, or particular type of media, such as video.
Such traffic may be identifiable using the URL or the pro-
tocol. Similarly, ISPs may target specific applications, e.g.,
VoIP, or peer-to-peer file transfers. Performance, the out-
come variable, is specific to the service. For example, we
use server response time for HTTP requests, loss, and jit-
ter for VoIP traffic, and average throughput for peer-to-peer
traffic.

ISP and Discrimination. Discrimination against a service
is a function of ISP policy. The performance for a service
depends on both the properties of the ISP’s network, e.g.,
its location, as well as the policy of treating the traffic dif-
ferently. Thus, an objective evaluation of ISP discrimination
must adjust for the ISP’s network as a confounding factor. To
differentiate an ISP’s network from its discrimination policy,
we use the ISP brand or name as the causal variable referring
to the ISP’s discrimination policy. In the rest of the paper,
when we use ISP as the cause, we are referring to the ISP
policy or the brand with which the policy is associated.

We aim to detect whether a certain practice of an ISP re-
sults in poorer performance for a service compared to other
similar services or performance for the same service through
other ISPs. If an ISP’s policy of treating traffic differently
does not result in degradation of performance, we do not
consider it as discrimination.

2.2 Background for Causal Inference

Statistical methods offer tools for causal inference that
have been used in observational and experimental studies [6,
7]. NANO draws heavily on these techniques. In this sec-
tion, we review basic concepts and approaches for causal in-
ference, and how they relate to inferring ISP discrimination.

Causal Effect. The statement “X causes Y” means that if
there is a change in the value of variable X , then we expect a
change in value of variable Y . We refer to X as the treatment
variable and Y as the outcome variable.

In the context of this paper, accessing a particular service
through an ISP is our treatment variable (X), and the ob-
served performance of a service (Y ) is our outcome variable.
Thus, treatment is a binary variable; X ∈ {0, 1}, X = 1
when we access the service through the ISP, and X = 0
when we do not (e.g., access the service through an alterna-
tive ISP). The value of outcome variable Y depends on the
performance metric and the service for which we are mea-

suring the performance.
The goal of causal inference is to estimate the effect of

the treatment variable (the ISP) on the outcome variable (the
service performance). Let’s define ground-truth value for
the outcome random variable as GX , so that G1 is the out-
come value for a client when X = 1, and G0 is the outcome
value when X = 0. We will refer to the outcome when not
using the ISP (X = 0) as the baseline—we can define base-
line in a number of ways, as we describe in more detail in
Section 3.1.2.

We can quantify the average causal effect of using an ISP
as the expected difference in the ground truth of service per-
formance between using the ISP and the baseline.

θ = E(G1) − E(G0) (1)

Note that to compute the causal effect, θ, we must observe
values of the outcome both under the treatment and without
the treatment.

Association vs. Causal Effect. In a typical in situ dataset,
each sample presents only the value of the outcome variable
either under the treatment, or under the lack of the treatment,
but not both; e.g., a dataset about users accessing a particular
service through one of the two possible ISPs, ISPa and ISPb,
will comprise data of the form where, for each client, we
have performance data for either ISPa or ISPb, but not both.
Such a dataset may thus be incomplete and therefore not suf-
ficient to compute the causal effect, as shown in Equation 1.

Instead, we can use such a dataset to compute correlation
or association. Let’s define association as simply the mea-
sure of observed effect on the outcome variable:

α = E(Y |X = 1) − E(Y |X = 0) (2)

It is well known that association is not a sufficient metric for
causal effect, and in general α 6= θ.

Example. Tables 1(a) and (b) illustrate the difference be-
tween association and causal effect using an example of
eight clients (a–h). The treatment variable X is binary; 1
if a user uses a particular ISP, and 0 otherwise. For simplic-
ity, the outcome (Y ) is also binary, 1 indicating that a client
observes good performance and 0 otherwise; both α and θ
are in the range [−1, 1].

Table 1(a) shows an in situ dataset. In this dataset, clients
a–d do not use the ISP in question and clients e–h use the
ISP. Note that for each sample, only one or the other out-
come is observable. The association value in this dataset is
α = −3/4. If we use the association value as an indicator
of causal effect, we would infer that using the ISP causes a
significant negative impact on the performance.

Table 1(b), on the other hand, presents the ground-truth
performance values, G0 and G1, as the performance when
not using the ISP and performance when using the ISP for
the same client, respectively. These values could be obtained
by either subjecting the client to the two cases, or through an
oracle. For this set of clients, the true average causal effect
θ = 1/8, which is quite small, implying that in reality, the
choice of ISP has no or little effect on the performance for
these clients. Although the in situ dataset is consistent with
the ground-truth, i.e., Y = GX , there is a clear discrepancy
between the observed association and the true causal effect.
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(a) (b) (c)

Original Dataset Ground Truth (Oracle) Random Treatment

X Y G0 G1 X Y
a 0 1 1 1 1 1

b 0 1 1 1 0 1
c 0 1 1 1 1 1

d 0 1 1 1 0 1

e 1 0 0 0 1 0

f 1 0 0 0 0 0
g 1 0 0 0 0 0

h 1 1 0 1 1 1

α = −3/4 θ = 1/8 α = 0

Table 1: (a) Observed Association (α) in a passive dataset (b) True
causal effect (θ) in an example dataset: α 6= θ. (c) Association con-
verges to causal effect under random treatment assignment: α ≈ θ.

2.3 Approaches for Estimating Causal Effect

This section presents two techniques for estimating the
causal effect, θ. The first, random treatment, involves an ac-
tive experiment, where we randomly assign the treatment to
the clients and observe the association. The second, adjust-
ing for confounding variables, is a passive technique, where
we work with only an in situ dataset and estimate the overall
causal effect by aggregating the causal effect across several
small strata.

1. Random Treatment. Because the ground-truth values
(G0, G1) are not simultaneously observable, we cannot es-
timate the true causal effect (Eq. 1) from an in situ dataset
alone. Fortunately, if we assign the clients to the treatment in
a way that is independent of the outcome, then under certain
conditions, association is an unbiased estimator of causal ef-
fect. This property holds because when X is independent of
GX , then E(GX) = E(GX |X) = E(Y |X); see [9, pp. 254–
255] for a proof. In Table 1(c) we randomly assign a treat-
ment, 0 or 1, to the clients and see that association, α, con-
verges to the true causal effect, θ.

For association to converge to causal effect with random
treatment, all other variables in the system that have a causal
association with the outcome variable must remain the as
we change the treatment. In the case of the example above,
association will converge to true causal effect under random
treatment, if and only if the original ISP and the alternative
ISP are both similar except for their discrimination policy.

Random treatment is difficult to emulate in the Internet for
two reasons. First, it is difficult to make users switch to an
arbitrary ISP, because not all ISPs may offer services in all
geographical areas, the users may be contractually bound to
a particular ISP, and asking users to switch ISPs is incon-
venient for users. Second, if changing the ISP brand also
means that the users must access the content through a rad-
ically different network which could affect the service per-
formance, then we cannot use the mere difference of per-
formance seen from the two ISPs as indication of interfer-
ence: the association may not converge to causal effect un-
der these conditions because the independence condition is
not satisfied. This situation is called operational confound-
ing: changing the treatment inadvertently or unavoidably
changes a confounding variable.

2. Adjusting for Confounding Variables. Because it is
difficult to emulate random treatment on the real Internet and
control operational confounding, we need to find a way to

adjust for the effects of confounding variables. NANO uses
the well-known stratification technique for this purpose [6].

Confounding variables are the extraneous variables in the
inference process that are correlated with both the treatment
and the outcome variables. As a result, if we simply ob-
serve the association between the treatment and the outcome
variables, we cannot infer causation or lack of it, because
we cannot be certain whether the change is due to change
in the treatment variable or a change in one or more of the
confounding variables.

With stratification, all samples in a stratum are similar in
terms of values for the confounding variables. As a result,
X and GX are independent of the confounding variables
within the stratum, essentially creating conditions that re-
semble random treatment. Thus, the association value within
the stratum converges to causal effect, and we can use asso-
ciation as a metric of causal effect within a strata.

2a. Challenges. This approach presents several challenges.
First, we must enumerate the confounding variables and col-
lect sufficient data to help disambiguate the true causal ef-
fect from the confounding effects. Second, we must define
the stratum boundaries in a way that satisfies the above con-
ditions. Unfortunately, there is no automated way to enu-
merate all the confounding variables for a given problem;
instead, we must rely on domain knowledge. Section 3 ad-
dresses these challenges.

2b. Formulation. In the context of NANO, we have multi-
ple ISPs and services; we wish to calculate the causal effect
θi,j that estimates how much the performance of a service j,
denoted by Yj , changes when it is accessed through ISP i,
versus when it is not accessed through ISP i. Let Z denote
the set of confounding variables, and s a stratum as described
above. The causal effect θi,j is formulated as:

θi,j(s; x) = E(Yj |Xi = x, Z ∈ B(s)) (3)

θi,j(s) = θi,j(s; 1) − θi,j(s; 0) (4)

θi,j =
∑

s

θi,j(s) (5)

B(s) represents the range of values of confounding variables
in the stratum s. θi,j(s) represents the causal effect within
the stratum s. A key aspect is the term θi,j(s; 0) in Equa-
tion 4: it represents the baseline service performance, or the
service performance when the ISP is not used; we define this
concept in more detail in Section 3.1.2. Note that the units
for causal effect are same as for service performance, so we
can apply simple thresholds to detect discrimination.

2c. Sufficiency of Confounding Variables. Although there
is no simple or automatic way to enumerate all the confound-
ing variables for a problem, we can test whether a given list
is sufficient in the realm of a given dataset. To do so, we pre-
dict the value of the outcome variable using a non-parametric
regression function, f(), of the treatment variable, X , and
the confounding variables, Z , as ŷ = f(X ; Z). We then
compare the predicted value with the value of outcome vari-
able observed in the given dataset, y, using relative error,
|y − ŷ|/y. If X and Z are sufficient to define the outcome
Y , then the prediction error should be small.
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3. NANO System Design

This section explains how NANO performs causal infer-
ence, enumerates the confounding variables required for this
inference, and describes the system architecture for collect-
ing and processing the relevant data.

3.1 Establishing the Causal Effect

Estimating the causal effect for a service degradation in-
volves three steps. First, we stratify the data. Next, we esti-
mate the extent of causal impact of possible ISP interference
within each stratum and across the board. Finally, we try to
infer the criteria that the ISP is using for discrimination.

3.1.1 Stratifying the data

To stratify the data, NANO creates bins (i.e., ranges of val-
ues) along the dimensions of each of the confounding vari-
ables, such that the value of the confounding variable within
the bin is (almost) constant. The bin size depends on the
nature of the confounding variable. As a general rule, we
create strata such that there is a bin for every unique value of
categorical variables; for the continuous variables, the bins
are sufficiently small, that the variable can be assumed to
have essentially a constant value within the stratum. For
example, for a confounding variable representing the client
browser, all the clients using a particular version and make
of the browser are in one stratum. Similarly, we create one
hour strata along the time-of-the-day variable.

We use simple correlation to test whether the treatment
variable and the outcome variable are independent of the
confounding variable within a stratum. We combine adja-
cent strata if the distribution of the outcome variable condi-
tioned on the treatment variable is identical in each of the
stratum; this reduces the total number of strata and the num-
ber of samples needed.

3.1.2 Establishing the baseline performance

A thorny aspect of Equation 4 is the term θi,j(s; 0), which
represents the baseline service performance, or the service
performance when the ISP is not used. This aspect raises
the question: What does it mean to not use ISP i to ac-
cess service j? It could mean using another ISP, k, but if
ISP k is also discriminating against service j, then θk,j(s; 1)
will not have the (neutral) ground-truth baseline value. To
address this problem, NANO takes θi,j(s; 0) as the average
service performance when not using ISP i, calculated as:
∑

k 6=i θk,j(s; 1)/(ns − 1), where ns > 2 is the number of

ISPs for which we have clients in stratum s.
An important implication of defining the baseline in this

way is that NANO is essentially comparing the performance
of a service through a particular ISP against the average
performance achieved through other ISPs, while adjusting
for the confounding effects. If all or most of the ISPs
across which NANO obtains measurements are discriminat-
ing against a service, it is not possible to detect such discrim-
ination using the above definition of baseline; in this case,
discrimination becomes the norm. In such cases, we might
consider using other definitions of discrimination, such as
the comparing against the best performance instead of the
average, or using a performance model of the service ob-

tained from laboratory experiments or mathematical analysis
as the baseline.

3.1.3 Inferring the discrimination criteria

NANO can infer the discrimination criteria that an ISP uses
by using simple decision-tree based classification methods.
For each stratum and service where NANO detects discrimi-
nation, NANO assigns a negative label, and for each stratum
and service where it does not detect discrimination, it assigns
a positive label. NANO then uses the values of the confound-
ing variables and the service identifier as the feature set and
uses the discrimination label as the target variable, and uses
a decision-tree algorithm to train the classifier.

The rules that the decision tree generates indicate the dis-
crimination criteria that the ISP uses, because the rules in-
dicate the boundaries of maximum information distance be-
tween discrimination and the lack of it.

3.2 Confounding Variables

Confounding variables are the extraneous factors in in-
ferring whether an ISP’s policy is discriminating against a
service; these variables correlate, either positively or neg-
atively, with both the ISP brands and service performance.
Because there is no automated way to enumerate these vari-
ables for particular problem, we must rely on domain knowl-
edge. In this section, we describe three categories of con-
founding variables and explain how they correlate with both
the ISP brands and the service performance. In Section 3.3,
we describe the specific variables that we collect to adjust
for these confounding variables.

Client-based. Client-side applications, as well as system
and network setup, can confound the inference. The particu-
lar application that a client uses for accessing a service might
affect the performance. For example, in the case of HTTP
services, certain Web sites may be optimized for a particu-
lar Web browser and perform poorly for others. Similarly,
certain Web browsers may be inherently different; for exam-
ple, at the time of this writing, Opera, Firefox, and Internet
Explorer use different number of simultaneous TCP connec-
tions, and only Opera uses HTTP pipelining by default. For
peer-to-peer traffic, various client software may experience
different performance. Similarly, the operating system and
the configuration of the client’s computer and local network,
as well as a client’s service contract, can affect the perfor-
mance that the client perceives for a service.

We believe that the above variables also correlate with ISP
brand, primarily because the ISP may serve particular com-
munities or localities. As an example, we expect that Mi-
crosoft’s Windows operating system may be more popular
among home users, while Unix variants may be more com-
mon in academic environments. Similarly, certain browsers
may be more popular among certain demographics and lo-
calities than other.

Network-based. Various properties of the Internet path,
such as location of the client or the ISP relative to the lo-
cation of the servers on the Internet, can cause performance
degradation for a service; such degradation is not discrim-
ination. Similarly, a path segment to a particular service
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Figure 1: NANO System Architecture.

provider might not be sufficiently provisioned, which could
degrade service. If we wish to not treat these effects as dis-
crimination, we should adjust for the path properties.

Time-based. Service performance varies widely with time-
of-day due to changes in utilization. Further, the utilization
may affect both the ISPs and the service providers, thus con-
founding the inference.

3.3 Data Collection and Analysis Architecture

An important aspect of NANO is collecting the necessary
data for facilitating inference. This section describes the cri-
teria for data collection, the features that we collect, and,
finally, the data collection mechanism.

1. Criteria. The criteria for data collection has two parts.
First, the feature should quantify the treatment variable, the
outcome variable, or the values of the confounding factors.
Second, the data should be unbiased.

The first criterion helps us determine a set of features for
which to collect data; this list is explained below. We can
collect many of these features through active or passive mon-
itoring. The second criterion, however, suggests that we
must take care that the measurements are not biased. As we
discussed in Section 1, ISPs may have the incentive to inter-
fere with identifiable active measurements to deter inference
of discrimination or improve their rankings. Similarly, we
believe that while we could use the data directly from service
providers as the “baseline” service performance, such infor-
mation could be biased in the favor of the service provider.
Therefore, to the extent possible, NANO relies on passive
measurements to determine the values of the features.

2. Mechanism. Given the nature of the confounding factors
and the desire to collect data passively, we believe the best
place to collect this data is using monitoring agents at clients.
Figure 1 shows the system architecture. The primary source
of data for NANO are client-side agents installed on com-
puters of voluntarily participating clients (NANO-Agents).
Each agent continuously monitors and reports the data to
the NANO servers. We are developing two versions of this
agent. The first is a Web-browser plug-in that can monitor
Web-related activities, and the second is a packet-level snif-
fer that can access more fine-grained information from the
client machines.

3. Dataset Features. The NANO-Agent collects three sets
of features for the confounding factors, corresponding to the
three classes of confounding variables (Section 3.2)

First, the NANO-Agent collects features that help identify
the client setup, including the operating system, basic sys-
tem configuration and resource utilization on the client ma-
chine. Second, NANO-Agents perform active measurements
to a corpus of diverse benchmark sites (PlanetLab nodes)
to establish the topological location of the clients and their
ISPs. These measurements include periodic short and long
transfers with the benchmark sites. These measurements are
similar in spirit to ones used by many Internet coordinate
systems [5]. NANO uses this information to establish the
topological properties of the ISP and stratify ISPs with sim-
ilar topological location to adjust path properties factor. Fi-
nally, all the data is time-stamped to allow adjustment for the
time-of-day factor.

To identify the treatment variable, i.e., ISP brand, we use
the IP address of the client and look it up againstwhois reg-
istry servers. To determine the performance for each service,
the NANO-Agent monitors and logs the information about
the ongoing traffic from the client machine for the services
that NANO monitors. The sniffer version of the agent logs
the network round-trip time (RTT) measurements to various
destinations for small and large packets. It also collects un-
sampled flow statistics for the ongoing flows to determine
the throughput, and also maintains the applications asso-
ciated with each flow. The latter is used to disambiguate
the performance differences that might be associated with
particular applications. The NANO-Agent tags this infor-
mation with a service identifier that it infers by inspecting
the packet payloads (e.g., by looking for regular-expression
google.com/search?q= in the HTTP request message
to identify search service), or, if possible, by looking at the
protocol and port numbers.

4. Simulation

To illustrate how NANO can detect ISP discrimination
against a particular service, we evaluate the technique in
simulation for a specific example. A rigorous validation of
the approach will ultimately require a real deployment where
there is less control over confounding variables; we discuss
this issue and various others in more detail in Section 5.

Our simulation setup comprises three ISPs, ISPA, ISPB ,
and ISPC , that provide connectivity for two services, S1 and
S2 for their respective clients. The clients use one of the two
types of applications, App1 and App2 to access the services
S1 and S2. Performance for the service S1 is sensitive to the
choice of application: clients perceive better performance
when using application App1, compared to using App2. The
performance of service S2 is agnostic to the choice of ap-
plication. The distribution of clients using the two types of
applications is different across the ISPs (e.g., due to demo-
graphics). In particular, we set the distribution of App1 to
be 60%, 10%, and 90%, across the three ISPs, respectively.
This distribution makes the client application a confounding
variable because its distribution correlates with both the ISP
and service performance.

We set up the experiment such that ISPB throttles the
bandwidth for all of its clients that access service S1. To
achieve this, we configure the request rates from the clients
and the available throttled bandwidth between the ISPs and
the services to achieve certain expected utilization levels. In
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(a) Association

Service S1 Service S2

Baseline 7.68 2.67
ISPB 8.60 2.71

Association 0.92 0.04

(b) Causal Effect

Service S1 Service S2

Confounding Var. App1 App2 App1 App2

Baseline 9.90 2.77 2.61 2.59
ISPB 11.95 7.95 2.67 2.67

Causal Effect 2.0 5.18 0.06 0.12

Table 2: Simulation Results: Estimating the causal effect between
ISPB and S1. All the numbers are request completion times in seconds.

particular, we configure the links so that the expected uti-
lization on all links is about 40%, except for the traffic from
ISPB to service S1, which faces about 90% utilization.

We aim to detect discrimination by ISPB against the ser-
vice S1, and establish a causal relationship. We compute
the association and causal effect using Equation 2 and Equa-
tion 4, respectively. We use the average response time seen
through ISPA and ISPC , combined, as the baseline.

Table 2 presents the association and causal effect esti-
mated for this simulation. Table 2(a) shows that ISPB has
little to no association for either service S1 or S2. How-
ever, as we stratify on the application variable, we see in
Table 2(b) that ISPB has significant causal effect for both
applications for service S1, but there is still no causal effect
for service S2. This example shows that, for this case, NANO

can establish a causal relationship where one exists (ISPB

and service S1), and rule out where one does not exist, e.g.,
between ISPB and S2.

5. Summary and Research Agenda

We presented Network Access Neutrality Observatory
(NANO), a system for inferring whether an ISP is discrim-
inating against a particular service. We have examined only
basic criteria for discrimination in a simulation environment;
in future work, we will evaluate NANO’s effectiveness in the
wide area, for a wider range of possible discrimination ac-
tivities, and in adversarial settings where ISPs may attempt
to evade detection. In this section, we pose several questions
that are guiding our ongoing work.

How can NANO-agents be deployed? NANO relies on par-
ticipating clients to collect the data needed to perform causal
inference. PlanetLab and CPR [4] nodes are our initial de-
ployment candidates, but in the long run, we wish to incen-
tivize home users to deploy NANO-Agents. Because NANO

inference engine must exclude all extraneous factors, includ-
ing transient faults to establish ISP discrimination, NANO-
Agents can additionally act as a network troubleshooting and
diagnostics application that users might find useful.

How can NANO-agents protect user privacy while still
exposing enough client-side information to expose dis-
crimination? Because some of the measurements that
NANO-Agent collects can lead to invasion of user privacy,
NANO stores the data in a stratified form and does not main-
tain any client-identifiable data (e.g., client IP addresses or

search queries). Further, we are instrumenting NANO to
give users full control over the services that the a NANO-
agent can monitor. Finally, we are investigating ways of dis-
tributed inference, were we may be able to mitigate the need
for aggregating the data at a central repository for inference,
instead, the NANO server can act as a coordinator and the
clients infer the discrimination in a peer-to-peer fashion.

Is NANO general enough to detect diverse, evolving, and
adversarial discrimination policies? ISPs may continue
to evolve their policies for distinguishing between various
services. One such policy is imposing quotas for Internet
traffic from a client [2]; in the future, ISPs may extend this
policy by exempting traffic to certain partner sites from such
quotas, thereby creating a discriminatory environments. We
believe that NANO can quickly detect such new policies and
infer the criteria if we measure sufficient metrics about the
state of the network and service.

How much data is needed to perform inference? NANO
requires a collection of sample data inputs from each stra-
tum to be able to adjust for each confounding variable. The
greater the variance of the confounding variables, the more
data samples are needed to adjust for each of them and estab-
lishing confidence bounds. While statistics theory does help
determine the number of samples needed for each stratum,
each variable will be distributed differently across the set of
clients and ISPs, so it is difficult to determine how many
clients would need to run NANO-Agents to allow sufficient
confidence levels for inference. We expect to understand this
better as we deploy these agents.
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